Direct Evidence for Solid-like Hydrogen in a Nanoporous Carbon Hydrogen Storage Material at Supercritical Temperatures

被引:59
作者
Ting, Valeska P. [1 ]
Ramirez-Cuesta, Anibal J. [2 ]
Bimbo, Nuno [1 ]
Sharpe, Jessica E. [1 ]
Noguera-Diaz, Antonio [1 ]
Presser, Volker [3 ,4 ]
Rudic, Svemir [5 ]
Mays, Timothy J. [1 ]
机构
[1] Univ Bath, Dept Chem Engn, Bath BA2 7AY, Avon, England
[2] Oak Ridge Natl Lab, Chem & Engn Mat Div, Oak Ridge, TN 37831 USA
[3] INM Leibniz Inst New Mat, D-66123 Saarbrucken, Germany
[4] Univ Saarland, Dept Mat Sci & Engn, D-66123 Saarbrucken, Germany
[5] Rutherford Appleton Lab, STFC, ISIS Facil, Didcot OX11 0QX, Oxon, England
基金
英国工程与自然科学研究理事会;
关键词
nanoporous materials; hydrogen storage; carbon; neutron scattering; METAL-ORGANIC FRAMEWORKS; CARBIDE-DERIVED CARBONS; NEUTRON-SCATTERING; H-2; ADSORPTION; PORE-SIZE; DIFFRACTION; PERFORMANCE; POROSITY; SORPTION; DENSITY;
D O I
10.1021/acsnano.5b02623
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Here we report direct physical evidence that confinement of molecular hydrogen (H-2) in an optimized nanoporous carbon results in accumulation of hydrogen with characteristics commensurate with solid H2 at temperatures up to 67 K above the liquid vapor critical temperature of bulk H2. This extreme densification is attributed to confinement of 112 molecules in the optimally sized micropores, and occurs at pressures as low as 0.02 MPa. The quantities of contained, solid-like H2 increased with pressure and were directly evaluated using in situ inelastic neutron scattering and confirmed by analysis of gas sorption isotherms. The demonstration of the existence of solid-like H2 challenges the existing assumption that supercritical hydrogen confined in nanopores has an upper limit of liquid H2 density. Thus, this insight offers opportunities for the development of more accurate models for the evaluation and design of nanoporous materials for high capacity adsorptive hydrogen storage.
引用
收藏
页码:8249 / 8254
页数:6
相关论文
共 41 条
  • [1] Analysis of hydrogen storage in nanoporous materials for low carbon energy applications
    Bimbo, Nuno
    Ting, Valeska P.
    Hruzewicz-Kolodziejczyk, Anna
    Mays, Timothy J.
    [J]. FARADAY DISCUSSIONS, 2011, 151 : 59 - 74
  • [2] Broom DP, 2011, GREEN ENERGY TECHNOL, P1
  • [3] Quantum rotation of hydrogen in single-wall carbon nanotubes
    Brown, CM
    Yildirim, T
    Neumann, DA
    Heben, MJ
    Gennett, T
    Dillon, AC
    Alleman, JL
    Fischer, JE
    [J]. CHEMICAL PHYSICS LETTERS, 2000, 329 (3-4) : 311 - 316
  • [4] Neutron powder diffraction of metal-organic frameworks for hydrogen storage
    Brown, Craig M.
    Liu, Yun
    Neumann, Dan A.
    [J]. PRAMANA-JOURNAL OF PHYSICS, 2008, 71 (04): : 755 - 760
  • [5] Lattice vibrations of para-hydrogen impurities in a solid deuterium matrix: An inelastic neutron scattering study
    Colognesi, D.
    Celli, M.
    Ramirez-Cuesta, A. J.
    Zoppi, M.
    [J]. PHYSICAL REVIEW B, 2007, 76 (17)
  • [6] Extended and accurate determination of the melting curves of argon, helium, ice (H2O), and hydrogen (H2)
    Datchi, F
    Loubeyre, P
    LeToullec, R
    [J]. PHYSICAL REVIEW B, 2000, 61 (10) : 6535 - 6546
  • [7] Melting line of hydrogen at high pressures
    Deemyad, Shanti
    Silvera, Isaac F.
    [J]. PHYSICAL REVIEW LETTERS, 2008, 100 (15)
  • [8] Performance comparison of adsorption isotherm models for supercritical hydrogen sorption on MOFs
    Dundar, E.
    Zacharia, R.
    Chahine, R.
    Benard, P.
    [J]. FLUID PHASE EQUILIBRIA, 2014, 363 : 74 - 85
  • [9] Modified potential theory for modeling supercritical gas adsorption
    Dundar, E.
    Zacharia, R.
    Chahine, R.
    Benard, P.
    [J]. INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2012, 37 (11) : 9137 - 9147
  • [10] Farha OK, 2010, NAT CHEM, V2, P944, DOI [10.1038/nchem.834, 10.1038/NCHEM.834]