Unsupervised Disentangling of Appearance and Geometry by Deformable Generator Network

被引:16
作者
Xing, Xianglei [1 ]
Han, Tian [2 ]
Gao, Ruiqi [2 ]
Zhu, Song-Chun [2 ]
Wu, Ying Nian [2 ]
机构
[1] Harbin Engn Univ, Coll Automat, Harbin 150001, Peoples R China
[2] Univ Calif Los Angeles, Dept Stat, Los Angeles, CA 90095 USA
来源
2019 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2019) | 2019年
关键词
OPTICAL-FLOW ESTIMATION;
D O I
10.1109/CVPR.2019.01060
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We present a deformable generator model to disentangle the appearance and geometric information in purely unsupervised manner. The appearance generator models the appearance related information, including color, illumination, identity or category, of an image, while the geometric generator performs geometric related warping, such as rotation and stretching, through generating displacement of the coordinate of each pixel to obtain the final image. Two generators act upon independent latent factors to extract disentangled appearance and geometric information from images. The proposed scheme is general and can be easily integrated into different generative models. An extensive set of qualitative and quantitative experiments shows that the appearance and geometric information can be well disentangled, and the learned geometric generator can be conveniently transferred to other image datasets to facilitate knowledge transfer tasks.
引用
收藏
页码:10346 / 10355
页数:10
相关论文
共 34 条
[1]  
Amos B., 2016, CMU School of Computer Science, V6, DOI DOI 10.1080/09541449108406221
[2]   Representation Learning: A Review and New Perspectives [J].
Bengio, Yoshua ;
Courville, Aaron ;
Vincent, Pascal .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2013, 35 (08) :1798-1828
[3]   High accuracy optical flow estimation based on a theory for warping [J].
Brox, T ;
Bruhn, A ;
Papenberg, N ;
Weickert, J .
COMPUTER VISION - ECCV 2004, PT 4, 2004, 2034 :25-36
[4]  
Burgess C. P., 2018, Understanding disentangling in $beta$-VAE
[5]  
Chen Xi, 2016, Advances in Neural Information Processing Systems, V29
[6]   Active appearance models [J].
Cootes, TF ;
Edwards, GJ ;
Taylor, CJ .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2001, 23 (06) :681-685
[7]   Deformable Convolutional Networks [J].
Dai, Jifeng ;
Qi, Haozhi ;
Xiong, Yuwen ;
Li, Yi ;
Zhang, Guodong ;
Hu, Han ;
Wei, Yichen .
2017 IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV), 2017, :764-773
[8]  
Denton E. L., 2015, Deep Generative Image Models using a obj Laplacian Pyramid of Adversarial Networks, P1486
[9]   FlowNet: Learning Optical Flow with Convolutional Networks [J].
Dosovitskiy, Alexey ;
Fischer, Philipp ;
Ilg, Eddy ;
Haeusser, Philip ;
Hazirbas, Caner ;
Golkov, Vladimir ;
van der Smagt, Patrick ;
Cremers, Daniel ;
Brox, Thomas .
2015 IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV), 2015, :2758-2766
[10]  
Goodfellow IJ, 2014, ADV NEUR IN, V27, P2672