A Multi-Scale Fusion Convolutional Neural Network for Face Detection

被引:0
|
作者
Chen, Qiaosong [1 ]
Meng, Xiaomin [1 ]
Li, Wen [1 ]
Fu, Xingyu [1 ]
Deng, Xin [1 ]
Wang, Jin [1 ]
机构
[1] Chongqing Univ Posts & Telecommun, Chongqing Key Lab Computat Intelligence, Chongqing 400065, Peoples R China
来源
2017 IEEE INTERNATIONAL CONFERENCE ON SYSTEMS, MAN, AND CYBERNETICS (SMC) | 2017年
基金
中国国家自然科学基金;
关键词
face detection; multi-scale; fusion; convolutional neural network;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Nowadays, more and more methods have been proposed to solve the problem of face detection based on computer implementation. Due to the variations in background, illumination, pose and facial expressions, the problem of machine face detection is complex. Recently, deep learning approaches achieve an impressive performance on face detection. In this paper, a model named Multi-Scale Fusion Convolutional Neural Network (MSF-CNN) is proposed to train the face detector. The model is trained by Convolutional Neural Network and detecting is based on the Viola & Jones detector's sliding windows structure. Particularly, in the process of feature extraction, we adopt the design of multi-scale feature fusion with different scale convolution kernels. The results are as follows: First, the fusion of multi-scale features are rich in the characteristics of learning, and the classification accuracy is higher than the single-scale. Second, we decrease the model of complexity compared with existed methods of the cascaded CNN. Third, we achieve end-to end learning compared with cascaded separate training. Meanwhile, the proposed model has showed that the performance of results outperforms the previous methods in some well-known face detection benchmark datasets.
引用
收藏
页码:1013 / 1018
页数:6
相关论文
共 50 条
  • [21] Underwater image restoration based on multi-scale attention fusion and convolutional neural network
    Wang D.-X.
    Wu R.-Y.
    Yuan H.-C.
    Gong P.
    Wang Y.
    Jilin Daxue Xuebao (Gongxueban)/Journal of Jilin University (Engineering and Technology Edition), 2021, 51 (04): : 1396 - 1404
  • [22] Deep Multi-Scale Fusion Neural Network for Multi-Class Arrhythmia Detection
    Wang, Ruxin
    Fan, Jianping
    Li, Ye
    IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS, 2020, 24 (09) : 2461 - 2472
  • [23] Multi-Scale Visual Attention Deep Convolutional Neural Network for Multi-Focus Image Fusion
    Lai, Rui
    Li, Yongxue
    Guan, Juntao
    Xiong, Ai
    IEEE ACCESS, 2019, 7 : 114385 - 114399
  • [24] Multi-Scale Dilated Convolutional Neural Network Based Multi-Focus Image Fusion Algorithm
    Yin Haitao
    Zhou Wei
    LASER & OPTOELECTRONICS PROGRESS, 2023, 60 (02)
  • [25] Multi-Scale Convolutional Neural Network Ensemble for Multi-Class Arrhythmia Classification
    Prabhakararao, Eedara
    Dandapat, Samarendra
    IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS, 2022, 26 (08) : 3802 - 3812
  • [26] Multi-View Video Quality Enhancement Method Based on Multi-Scale Fusion Convolutional Neural Network and Visual Saliency
    Wang, Weizhe
    Dai, Erzhuang
    IEEE ACCESS, 2024, 12 : 33100 - 33108
  • [27] Multi-Scale convolutional neural network for finger vein recognition
    Liu, Junbo
    Ma, Hui
    Guo, Zishuo
    INFRARED PHYSICS & TECHNOLOGY, 2024, 143
  • [28] Learning Environmental Sounds with Multi-scale Convolutional Neural Network
    Zhu, Boqing
    Wang, Changjian
    Liu, Feng
    Lei, Jin
    Huang, Zhen
    Peng, Yuxing
    Li, Fei
    2018 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2018,
  • [29] Lightweight Face Detection Algorithm with Multi-scale Feature Fusion
    Wang J.
    Song X.
    Moshi Shibie yu Rengong Zhineng/Pattern Recognition and Artificial Intelligence, 2022, 35 (06): : 507 - 515
  • [30] Multi-Scale Feature Fusion Convolutional Neural Networks for Fault Diagnosis of Electromechanical Actuator
    Song, Yutong
    Du, Jinhua
    Li, Shixiao
    Long, Yun
    Liang, Deliang
    Liu, Yifeng
    Wang, Yao
    APPLIED SCIENCES-BASEL, 2023, 13 (15):