A Multi-Scale Fusion Convolutional Neural Network for Face Detection

被引:0
|
作者
Chen, Qiaosong [1 ]
Meng, Xiaomin [1 ]
Li, Wen [1 ]
Fu, Xingyu [1 ]
Deng, Xin [1 ]
Wang, Jin [1 ]
机构
[1] Chongqing Univ Posts & Telecommun, Chongqing Key Lab Computat Intelligence, Chongqing 400065, Peoples R China
来源
2017 IEEE INTERNATIONAL CONFERENCE ON SYSTEMS, MAN, AND CYBERNETICS (SMC) | 2017年
基金
中国国家自然科学基金;
关键词
face detection; multi-scale; fusion; convolutional neural network;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Nowadays, more and more methods have been proposed to solve the problem of face detection based on computer implementation. Due to the variations in background, illumination, pose and facial expressions, the problem of machine face detection is complex. Recently, deep learning approaches achieve an impressive performance on face detection. In this paper, a model named Multi-Scale Fusion Convolutional Neural Network (MSF-CNN) is proposed to train the face detector. The model is trained by Convolutional Neural Network and detecting is based on the Viola & Jones detector's sliding windows structure. Particularly, in the process of feature extraction, we adopt the design of multi-scale feature fusion with different scale convolution kernels. The results are as follows: First, the fusion of multi-scale features are rich in the characteristics of learning, and the classification accuracy is higher than the single-scale. Second, we decrease the model of complexity compared with existed methods of the cascaded CNN. Third, we achieve end-to end learning compared with cascaded separate training. Meanwhile, the proposed model has showed that the performance of results outperforms the previous methods in some well-known face detection benchmark datasets.
引用
收藏
页码:1013 / 1018
页数:6
相关论文
共 50 条
  • [1] Multi-scale face detection based on convolutional neural network
    Luo, Mingzhu
    Xiao, Yewei
    Zhou, Yan
    2018 CHINESE AUTOMATION CONGRESS (CAC), 2018, : 1752 - 1757
  • [2] An improved multi-scale face detection using convolutional neural network
    Mliki, Hazar
    Dammak, Sahar
    Fendri, Emna
    SIGNAL IMAGE AND VIDEO PROCESSING, 2020, 14 (07) : 1345 - 1353
  • [3] An improved multi-scale face detection using convolutional neural network
    Hazar Mliki
    Sahar Dammak
    Emna Fendri
    Signal, Image and Video Processing, 2020, 14 : 1345 - 1353
  • [4] Multi-Scale Feature Fusion Convolutional Neural Network for Indoor Small Target Detection
    Huang, Li
    Chen, Cheng
    Yun, Juntong
    Sun, Ying
    Tian, Jinrong
    Hao, Zhiqiang
    Yu, Hui
    Ma, Hongjie
    FRONTIERS IN NEUROROBOTICS, 2022, 16
  • [5] Multi-scale convolutional neural network for multi-focus image fusion
    Mustafa, Hafiz Tayyab
    Yang, Jie
    Zareapoor, Masoumeh
    IMAGE AND VISION COMPUTING, 2019, 85 : 26 - 35
  • [6] Impact Load Localization Based on Multi-Scale Feature Fusion Convolutional Neural Network
    Wu, Shiji
    Huang, Xiufeng
    Xu, Rongwu
    Yu, Wenjing
    Cheng, Guo
    SENSORS, 2024, 24 (18)
  • [7] QoS Prediction via Multi-scale Feature Fusion Based on Convolutional Neural Network
    Xu, Hanzhi
    Shu, Yanjun
    Zhang, Zhan
    Zuo, Decheng
    SERVICE-ORIENTED COMPUTING, ICSOC 2023, PT I, 2023, 14419 : 119 - 134
  • [8] DDoS Attack Detection via Multi-Scale Convolutional Neural Network
    Cheng, Jieren
    Liu, Yifu
    Tang, Xiangyan
    Sheng, Victor S.
    Li, Mengyang
    Li, Junqi
    CMC-COMPUTERS MATERIALS & CONTINUA, 2020, 62 (03): : 1317 - 1333
  • [9] Multi-Scale Prediction For Fire Detection Using Convolutional Neural Network
    Myeongho Jeon
    Han-Soo Choi
    Junho Lee
    Myungjoo Kang
    Fire Technology, 2021, 57 : 2533 - 2551
  • [10] Multi-Scale Prediction For Fire Detection Using Convolutional Neural Network
    Jeon, Myeongho
    Choi, Han-Soo
    Lee, Junho
    Kang, Myungjoo
    FIRE TECHNOLOGY, 2021, 57 (05) : 2533 - 2551