Remaining Useful Life Prediction for Lithium-Ion Batteries Based on CS-VMD and GRU

被引:27
|
作者
Ding, Guorong [1 ]
Wang, Wenbo [1 ]
Zhu, Ting [1 ]
机构
[1] Wuhan Univ Sci & Technol, Coll Sci, Wuhan 430065, Hubei, Peoples R China
基金
中国国家自然科学基金;
关键词
Batteries; Mathematical models; Predictive models; Logic gates; Lithium-ion batteries; Complexity theory; Prediction algorithms; Lithium-ion battery RUL prediction; CS-VMD; GRU;
D O I
10.1109/ACCESS.2022.3167759
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Accurate prediction the remaining useful life (RUL) and estimation the state of health (SOH) are critical to the management of lithium-ion batteries. In this paper, a lithium battery capacity prediction method based on cuckoo search optimization variational mode decomposition (CS-VMD) and gated recurrent unit (GRU) is proposed. Firstly, the VMD algorithm is used to divide the capacity into some intrinsic mode functions (IMFs) to reduce the impact of capacity regeneration and other situations. The number of decomposition layers and the quadratic penalty factor of VMD are optimized by the CS algorithm. Then, the GRU network is introduced to capture small changes in the capacity degradation process and perform the capacity prediction of decomposed sequence. Finally, some prediction results are integrated effectively. Based on two publicly available lithium-ion battery datasets, the model proposed in this paper can significantly reduce the complexity of the sequence and have high prediction accuracy, which is better than other prediction models. The root mean square error (RMSE) is controlled within 2%, and the maximum mean absolute error (MAE) does not exceed 2%.
引用
收藏
页码:89402 / 89413
页数:12
相关论文
共 50 条
  • [41] A Bayesian Mixture Neural Network for Remaining Useful Life Prediction of Lithium-Ion Batteries
    Zhang, Shuxin
    Liu, Zhitao
    Su, Hongye
    IEEE TRANSACTIONS ON TRANSPORTATION ELECTRIFICATION, 2022, 8 (04) : 4708 - 4721
  • [42] AttMoE: Attention with Mixture of Experts for remaining useful life prediction of lithium-ion batteries
    Chen, Daoquan
    Zhou, Xiuze
    JOURNAL OF ENERGY STORAGE, 2024, 84
  • [43] Lithium-ion batteries Remaining Useful Life Prediction Method Considering Recovery Phenomenon
    Zhang, Zhenyu
    Shen, Dongxu
    Peng, Zhen
    Guan, Yong
    Yuan, Huimei
    Wu, Lifeng
    INTERNATIONAL JOURNAL OF ELECTROCHEMICAL SCIENCE, 2019, 14 (08): : 7149 - 7165
  • [44] A Novel Remaining Useful Life Prediction Method for Capacity Diving Lithium-Ion Batteries
    Gao, Kaidi
    Xu, Jingyun
    Li, Zuxin
    Cai, Zhiduan
    Jiang, Dongming
    Zeng, Aigang
    ACS OMEGA, 2022, 7 (30): : 26701 - 26714
  • [45] Validation and verification of a hybrid method for remaining useful life prediction of lithium-ion batteries
    Zhang, YongZhi
    Xiong, Rui
    He, HongWen
    Pecht, Michael
    JOURNAL OF CLEANER PRODUCTION, 2019, 212 : 240 - 249
  • [46] An Adaptive Noise Reduction Approach for Remaining Useful Life Prediction of Lithium-Ion Batteries
    Qu, Wenyu
    Chen, Guici
    Zhang, Tingting
    ENERGIES, 2022, 15 (19)
  • [47] AttMoE: Attention with Mixture of Experts for remaining useful life prediction of lithium-ion batteries
    Chen, Daoquan
    Zhou, Xiuze
    Journal of Energy Storage, 2024, 84
  • [48] Remaining Useful Life Estimation of Lithium-Ion Batteries based on Thermal Dynamics
    Zhang, Dong
    Dey, Satadru
    Perez, Hector E.
    Moura, Scott J.
    2017 AMERICAN CONTROL CONFERENCE (ACC), 2017, : 4042 - 4047
  • [49] Remaining useful life prediction of lithium-ion batteries via an EIS based deep learning approach
    Li, Jie
    Zhao, Shiming
    Miah, Md Sipon
    Niu, Mingbo
    ENERGY REPORTS, 2023, 10 : 3629 - 3638
  • [50] Early prediction of remaining useful life for Lithium-ion batteries based on a hybrid machine learning method
    Tong, Zheming
    Miao, Jiazhi
    Tong, Shuiguang
    Lu, Yingying
    JOURNAL OF CLEANER PRODUCTION, 2021, 317