Remaining Useful Life Prediction for Lithium-Ion Batteries Based on CS-VMD and GRU

被引:27
|
作者
Ding, Guorong [1 ]
Wang, Wenbo [1 ]
Zhu, Ting [1 ]
机构
[1] Wuhan Univ Sci & Technol, Coll Sci, Wuhan 430065, Hubei, Peoples R China
基金
中国国家自然科学基金;
关键词
Batteries; Mathematical models; Predictive models; Logic gates; Lithium-ion batteries; Complexity theory; Prediction algorithms; Lithium-ion battery RUL prediction; CS-VMD; GRU;
D O I
10.1109/ACCESS.2022.3167759
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Accurate prediction the remaining useful life (RUL) and estimation the state of health (SOH) are critical to the management of lithium-ion batteries. In this paper, a lithium battery capacity prediction method based on cuckoo search optimization variational mode decomposition (CS-VMD) and gated recurrent unit (GRU) is proposed. Firstly, the VMD algorithm is used to divide the capacity into some intrinsic mode functions (IMFs) to reduce the impact of capacity regeneration and other situations. The number of decomposition layers and the quadratic penalty factor of VMD are optimized by the CS algorithm. Then, the GRU network is introduced to capture small changes in the capacity degradation process and perform the capacity prediction of decomposed sequence. Finally, some prediction results are integrated effectively. Based on two publicly available lithium-ion battery datasets, the model proposed in this paper can significantly reduce the complexity of the sequence and have high prediction accuracy, which is better than other prediction models. The root mean square error (RMSE) is controlled within 2%, and the maximum mean absolute error (MAE) does not exceed 2%.
引用
收藏
页码:89402 / 89413
页数:12
相关论文
共 50 条
  • [21] Remaining Useful Life Prediction for Lithium-Ion Batteries Based on a Hybrid Deep Learning Model
    Chen, Chao
    Wei, Jie
    Li, Zhenhua
    PROCESSES, 2023, 11 (08)
  • [22] Remaining Useful Life Prediction of Lithium-Ion Batteries Based on Data Preprocessing and Improved ELM
    Wu, Weili
    Lu, Shuangshuang
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2023, 72
  • [23] Remaining Useful Life Prediction for Lithium-Ion Batteries Based on Exponential Model and Particle Filter
    Zhang, Lijun
    Mu, Zhongqiang
    Sun, Changyan
    IEEE ACCESS, 2018, 6 : 17729 - 17740
  • [24] Remaining useful life prediction of lithium-ion batteries based on autoregression with exogenous variables model
    Huang, Zhelin
    Ma, Zhihua
    RELIABILITY ENGINEERING & SYSTEM SAFETY, 2024, 252
  • [25] A Transferable Prediction Approach for the Remaining Useful Life of Lithium-Ion Batteries Based on Small Samples
    Qin, Haochen
    Fan, Xuexin
    Fan, Yaxiang
    Wang, Ruitian
    Shang, Qianyi
    Zhang, Dong
    APPLIED SCIENCES-BASEL, 2023, 13 (14):
  • [26] Remaining useful life prediction for lithium-ion batteries in later period based on a fusion model
    Cai, Li
    TRANSACTIONS OF THE INSTITUTE OF MEASUREMENT AND CONTROL, 2023, 45 (02) : 302 - 315
  • [27] Remaining useful life prediction of lithium-ion batteries based on hybrid ISSA-LSTM
    Zou H.
    Chai Y.
    Yang Q.
    Chen J.
    Dianli Xitong Baohu yu Kongzhi/Power System Protection and Control, 2023, 51 (19): : 21 - 31
  • [28] Study on Remaining Useful Life Prediction of Lithium-ion Batteries Based on Charge Transfer Resistance
    基于传荷电阻的锂离子电池剩余寿命预测研究
    Dai, Haifeng (tongjidai@tongji.edu.cn); Dai, Haifeng (tongjidai@tongji.edu.cn), 1600, Chinese Mechanical Engineering Society (57): : 105 - 117
  • [29] Remaining Useful Life Prediction of Lithium-Ion Batteries Based on Spherical Cubature Particle Filter
    Wang, Dong
    Yang, Fangfang
    Tsui, Kwok-Leung
    Zhou, Qiang
    Bae, Suk Joo
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2016, 65 (06) : 1282 - 1291
  • [30] Remaining Useful Life Prediction of Lithium-Ion Batteries Based on Deep Learning and Soft Sensing
    Wang, Zhuqing
    Ma, Qiqi
    Guo, Yangming
    ACTUATORS, 2021, 10 (09)