Remaining Useful Life Prediction for Lithium-Ion Batteries Based on CS-VMD and GRU

被引:27
|
作者
Ding, Guorong [1 ]
Wang, Wenbo [1 ]
Zhu, Ting [1 ]
机构
[1] Wuhan Univ Sci & Technol, Coll Sci, Wuhan 430065, Hubei, Peoples R China
基金
中国国家自然科学基金;
关键词
Batteries; Mathematical models; Predictive models; Logic gates; Lithium-ion batteries; Complexity theory; Prediction algorithms; Lithium-ion battery RUL prediction; CS-VMD; GRU;
D O I
10.1109/ACCESS.2022.3167759
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Accurate prediction the remaining useful life (RUL) and estimation the state of health (SOH) are critical to the management of lithium-ion batteries. In this paper, a lithium battery capacity prediction method based on cuckoo search optimization variational mode decomposition (CS-VMD) and gated recurrent unit (GRU) is proposed. Firstly, the VMD algorithm is used to divide the capacity into some intrinsic mode functions (IMFs) to reduce the impact of capacity regeneration and other situations. The number of decomposition layers and the quadratic penalty factor of VMD are optimized by the CS algorithm. Then, the GRU network is introduced to capture small changes in the capacity degradation process and perform the capacity prediction of decomposed sequence. Finally, some prediction results are integrated effectively. Based on two publicly available lithium-ion battery datasets, the model proposed in this paper can significantly reduce the complexity of the sequence and have high prediction accuracy, which is better than other prediction models. The root mean square error (RMSE) is controlled within 2%, and the maximum mean absolute error (MAE) does not exceed 2%.
引用
收藏
页码:89402 / 89413
页数:12
相关论文
共 50 条
  • [11] Remaining Useful Life Prediction for Lithium-Ion Batteries Based on Gaussian Processes Mixture
    Li, Lingling
    Wang, Pengchong
    Chao, Kuei-Hsiang
    Zhou, Yatong
    Xie, Yang
    PLOS ONE, 2016, 11 (09):
  • [12] Prediction of Remaining Useful Life of Lithium Batteries Based on WOA-VMD and LSTM
    Ouyang, Mingsan
    Shen, Peicheng
    ENERGIES, 2022, 15 (23)
  • [13] A Hybrid Prognostic Approach for Remaining Useful Life Prediction of Lithium-Ion Batteries
    Yang, Wen-An
    Xiao, Maohua
    Zhou, Wei
    Guo, Yu
    Liao, Wenhe
    SHOCK AND VIBRATION, 2016, 2016
  • [14] Remaining useful life prediction of lithium-ion batteries using a hybrid model
    Yao, Fang
    He, Wenxuan
    Wu, Youxi
    Ding, Fei
    Meng, Defang
    ENERGY, 2022, 248
  • [15] An interpretable online prediction method for remaining useful life of lithium-ion batteries
    Li, Zuxin
    Shen, Shengyu
    Ye, Yifu
    Cai, Zhiduan
    Zhen, Aigang
    SCIENTIFIC REPORTS, 2024, 14 (01):
  • [16] PREDICTION OF REMAINING USEFUL LIFE OF LITHIUM BATTERIES BASED ON CS-DBN
    Liang J.
    He X.
    Xiao H.
    Taiyangneng Xuebao/Acta Energiae Solaris Sinica, 2024, 45 (03): : 251 - 259
  • [17] Remaining Useful Life Prediction for Lithium-Ion Batteries With a Hybrid Model Based on TCN-GRU-DNN and Dual Attention Mechanism
    Li, Lei
    Li, Yuanjiang
    Mao, Runze
    Li, Li
    Hua, Wenbo
    Zhang, Jinglin
    IEEE TRANSACTIONS ON TRANSPORTATION ELECTRIFICATION, 2023, 9 (03) : 4726 - 4740
  • [18] Remaining Useful Life Prediction of Lithium-Ion Batteries Based on the Wiener Process with Measurement Error
    Tang, Shengjin
    Yu, Chuanqiang
    Wang, Xue
    Guo, Xiaosong
    Si, Xiaosheng
    ENERGIES, 2014, 7 (02): : 520 - 547
  • [19] Remaining useful life prediction of lithium-ion batteries based on data denoising and improved transformer
    Zhou, Kaile
    Zhang, Zhiyue
    JOURNAL OF ENERGY STORAGE, 2024, 100
  • [20] Remaining Useful Life Prediction for Lithium-Ion Batteries Based on Improved Support Vector Regression
    Xu J.
    Ni Y.
    Zhu C.
    Diangong Jishu Xuebao/Transactions of China Electrotechnical Society, 2021, 36 (17): : 3693 - 3704