Remaining Useful Life Prediction for Lithium-Ion Batteries Based on CS-VMD and GRU

被引:28
作者
Ding, Guorong [1 ]
Wang, Wenbo [1 ]
Zhu, Ting [1 ]
机构
[1] Wuhan Univ Sci & Technol, Coll Sci, Wuhan 430065, Hubei, Peoples R China
基金
中国国家自然科学基金;
关键词
Batteries; Mathematical models; Predictive models; Logic gates; Lithium-ion batteries; Complexity theory; Prediction algorithms; Lithium-ion battery RUL prediction; CS-VMD; GRU;
D O I
10.1109/ACCESS.2022.3167759
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Accurate prediction the remaining useful life (RUL) and estimation the state of health (SOH) are critical to the management of lithium-ion batteries. In this paper, a lithium battery capacity prediction method based on cuckoo search optimization variational mode decomposition (CS-VMD) and gated recurrent unit (GRU) is proposed. Firstly, the VMD algorithm is used to divide the capacity into some intrinsic mode functions (IMFs) to reduce the impact of capacity regeneration and other situations. The number of decomposition layers and the quadratic penalty factor of VMD are optimized by the CS algorithm. Then, the GRU network is introduced to capture small changes in the capacity degradation process and perform the capacity prediction of decomposed sequence. Finally, some prediction results are integrated effectively. Based on two publicly available lithium-ion battery datasets, the model proposed in this paper can significantly reduce the complexity of the sequence and have high prediction accuracy, which is better than other prediction models. The root mean square error (RMSE) is controlled within 2%, and the maximum mean absolute error (MAE) does not exceed 2%.
引用
收藏
页码:89402 / 89413
页数:12
相关论文
共 50 条
  • [11] Remaining Useful Life Prediction for Lithium-Ion Batteries Based on a Hybrid Deep Learning Model
    Chen, Chao
    Wei, Jie
    Li, Zhenhua
    PROCESSES, 2023, 11 (08)
  • [12] Remaining useful life prediction for lithium-ion batteries in later period based on a fusion model
    Cai, Li
    TRANSACTIONS OF THE INSTITUTE OF MEASUREMENT AND CONTROL, 2023, 45 (02) : 302 - 315
  • [13] Remaining useful life prediction of Lithium-ion batteries based on PSO-RF algorithm
    Wu, Jingjin
    Cheng, Xukun
    Huang, Heng
    Fang, Chao
    Zhang, Ling
    Zhao, Xiaokang
    Zhang, Lina
    Xing, Jiejie
    FRONTIERS IN ENERGY RESEARCH, 2023, 10
  • [14] iTransformer Network Based Approach for Accurate Remaining Useful Life Prediction in Lithium-Ion Batteries
    Jha, Anurag
    Dorkar, Oorja
    Biswas, Atriya
    Emadi, Ali
    2024 IEEE TRANSPORTATION ELECTRIFICATION CONFERENCE AND EXPO, ITEC 2024, 2024,
  • [15] The development of machine learning-based remaining useful life prediction for lithium-ion batteries
    Li, Xingjun
    Yu, Dan
    Byg, Vilsen Soren
    Ioan, Store Daniel
    JOURNAL OF ENERGY CHEMISTRY, 2023, 82 : 103 - 121
  • [16] Remaining Useful Life Prediction for Lithium-Ion Batteries Based on Improved Support Vector Regression
    Xu J.
    Ni Y.
    Zhu C.
    Diangong Jishu Xuebao/Transactions of China Electrotechnical Society, 2021, 36 (17): : 3693 - 3704
  • [17] Remaining Useful Life Prediction of Lithium-Ion Batteries Based on the Wiener Process with Measurement Error
    Tang, Shengjin
    Yu, Chuanqiang
    Wang, Xue
    Guo, Xiaosong
    Si, Xiaosheng
    ENERGIES, 2014, 7 (02): : 520 - 547
  • [18] Multi-Parameter Optimization Method for Remaining Useful Life Prediction of Lithium-Ion Batteries
    Long, Bing
    Gao, Xiaoyu
    Li, Pengcheng
    Liu, Zhen
    IEEE ACCESS, 2020, 8 : 142557 - 142570
  • [19] Remaining Useful Life Prediction of Lithium-Ion Batteries Based on Conditional Variational Autoencoders-Particle Filter
    Jiao, Ruihua
    Peng, Kaixiang
    Dong, Jie
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2020, 69 (11) : 8831 - 8843
  • [20] A data-driven prediction model for the remaining useful life prediction of lithium-ion batteries
    Feng, Juqiang
    Cai, Feng
    Li, Huachen
    Huang, Kaifeng
    Yin, Hao
    PROCESS SAFETY AND ENVIRONMENTAL PROTECTION, 2023, 180 : 601 - 615