Modelling the influence of the fibre structure on the structural behaviour of flowable fibre-reinforced concrete

被引:13
|
作者
Sarmiento, E. V. [1 ]
Hendriks, M. A. N. [1 ,2 ]
Geiker, M. R. [1 ]
Kanstad, T. [1 ]
机构
[1] Norwegian Univ Sci & Technol NTNU, Dept Struct Engn, Trondheim, Norway
[2] Delft Univ Technol, Dept Struct Engn, Fac Civil Engn & Geosci, Delft, Netherlands
关键词
Fibre reinforced concrete; Inhomogeneity of the fibre structure; Fibre orientation tensor; Fibre volume fraction; Nonlinear finite element modelling; RILEM TC 162-TDF; SELF-COMPACTING CONCRETE; MECHANICAL-PROPERTIES; DESIGN METHODS; POSTCRACKING BEHAVIOR; ORIENTATION; PERFORMANCE; ELEMENTS; SFRC; FRC;
D O I
10.1016/j.engstruct.2016.05.053
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
This paper presents a modelling approach for fibre-reinforced concrete elements in which the fibre structure is taken into account in simulating the mechanical behaviour. The fibre structure is discretized in volumes and two fibre parameters are defined for each discrete volume: the dominant fibre orientation and the fibre volume fraction. These parameters are incorporated in a numerical model that uses a single-phase material definition dependent on the fibre parameters. The first part of this paper describes the methodology and constitutive modelling. The second part addresses the simulation of two beams that exhibited large differences in bending because of uneven fibre distribution. Data on the fibre structure was obtained using Computed Tomography scanning. The modelling approach captured the large difference in the flexural response of the two beams and provided an adequate prediction of the location and propagation of the critical cracks. (C) 2016 Elsevier Ltd. All rights reserved.
引用
收藏
页码:186 / 195
页数:10
相关论文
共 50 条
  • [31] Design of Fibre-Reinforced Concrete Structures
    Sakic, Bogdan
    IPSI BGD TRANSACTIONS ON INTERNET RESEARCH, 2024, 20 (01): : 88 - 94
  • [32] Investigating Flexural Behaviour of Prestressed Concrete Girders Cast by Fibre-Reinforced Concrete
    Rashid, Muhammad U.
    Qureshi, Liaqat A.
    Tahir, Muhammad F.
    ADVANCES IN CIVIL ENGINEERING, 2019, 2019
  • [33] Fatigue behaviour of sea sand concrete beams reinforced with basalt fibre-reinforced polymer bars
    Li, Lijuan
    Hou, Bin
    Lu, Zhongyu
    Liu, Feng
    CONSTRUCTION AND BUILDING MATERIALS, 2018, 179 : 160 - 171
  • [34] Dynamic Fracture of Fibre-Reinforced Concrete Depending on the Shape and Material of the Reinforcing Fibre
    Selyutina, N. S.
    Khairetdinova, D. D.
    JOURNAL OF DYNAMIC BEHAVIOR OF MATERIALS, 2025, 11 (01) : 34 - 44
  • [35] Influence of aggregate gradation on the performance of fibre-reinforced pervious concrete
    Sathe, Sandeep
    Gholap, Bhagyashri
    PROCEEDINGS OF THE INSTITUTION OF CIVIL ENGINEERS-STRUCTURES AND BUILDINGS, 2025,
  • [36] Influence of voids on the compressive failure behaviour of fibre-reinforced composites
    Liebig, Wilfried V.
    Viets, Christian
    Schulte, Karl
    Fiedler, Bodo
    COMPOSITES SCIENCE AND TECHNOLOGY, 2015, 117 : 225 - 233
  • [37] Mechanical behaviour of fire-exposed fibre-reinforced sustainable concrete
    Sahani, Ashok Kumar
    Samanta, Amiya K.
    Singharoy, Dilip K.
    JOURNAL OF STRUCTURAL FIRE ENGINEERING, 2019, 10 (04) : 482 - 503
  • [38] Mechanical Properties of Macro Polypropylene Fibre-Reinforced Concrete
    Abousnina, Rajab
    Premasiri, Sachindra
    Anise, Vilive
    Lokuge, Weena
    Vimonsatit, Vanissorn
    Ferdous, Wahid
    Alajarmeh, Omar
    POLYMERS, 2021, 13 (23)
  • [39] Inverse analysis-based model for the tensile behaviour of fibre-reinforced concrete with manufactured and waste tyres recovered fibres
    Blasi, Gianni
    Leone, Marianovella
    CASE STUDIES IN CONSTRUCTION MATERIALS, 2022, 17
  • [40] Flexural fatigue analysis of hybrid fibre-reinforced concrete
    Bajaj, Vineet
    Singh, Surinder Pal
    Singh, Amrit Pal
    Kaushik, Surendra Kumar
    MAGAZINE OF CONCRETE RESEARCH, 2012, 64 (04) : 361 - 373