Modelling the influence of the fibre structure on the structural behaviour of flowable fibre-reinforced concrete

被引:14
|
作者
Sarmiento, E. V. [1 ]
Hendriks, M. A. N. [1 ,2 ]
Geiker, M. R. [1 ]
Kanstad, T. [1 ]
机构
[1] Norwegian Univ Sci & Technol NTNU, Dept Struct Engn, Trondheim, Norway
[2] Delft Univ Technol, Dept Struct Engn, Fac Civil Engn & Geosci, Delft, Netherlands
关键词
Fibre reinforced concrete; Inhomogeneity of the fibre structure; Fibre orientation tensor; Fibre volume fraction; Nonlinear finite element modelling; RILEM TC 162-TDF; SELF-COMPACTING CONCRETE; MECHANICAL-PROPERTIES; DESIGN METHODS; POSTCRACKING BEHAVIOR; ORIENTATION; PERFORMANCE; ELEMENTS; SFRC; FRC;
D O I
10.1016/j.engstruct.2016.05.053
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
This paper presents a modelling approach for fibre-reinforced concrete elements in which the fibre structure is taken into account in simulating the mechanical behaviour. The fibre structure is discretized in volumes and two fibre parameters are defined for each discrete volume: the dominant fibre orientation and the fibre volume fraction. These parameters are incorporated in a numerical model that uses a single-phase material definition dependent on the fibre parameters. The first part of this paper describes the methodology and constitutive modelling. The second part addresses the simulation of two beams that exhibited large differences in bending because of uneven fibre distribution. Data on the fibre structure was obtained using Computed Tomography scanning. The modelling approach captured the large difference in the flexural response of the two beams and provided an adequate prediction of the location and propagation of the critical cracks. (C) 2016 Elsevier Ltd. All rights reserved.
引用
收藏
页码:186 / 195
页数:10
相关论文
共 50 条
  • [1] Influence of yield stress and compressive strength on direct shear behaviour of steel fibre-reinforced concrete
    Boulekbache, Bensaid
    Hamrat, Mostefa
    Chemrouk, Mohamed
    Amziane, Sofiane
    CONSTRUCTION AND BUILDING MATERIALS, 2012, 27 (01) : 6 - 14
  • [2] Flowable Fibre-Reinforced Concrete: Progress in Understanding and Development of Design Standards
    Griinewald, Steffen
    Ferrara, Liberato
    Dehn, Frank
    SCC 2016 - 8TH INTERNATIONAL RILEM SYMPOSIUM ON SELF-COMPACTING CONCRETE, 2016, 100 : 467 - 477
  • [3] Discussion: Mechanical properties of hybrid fibre-reinforced concrete - analytical modelling and experimental behaviour
    Abadel, Aref
    Abbas, Husain
    Almusallam, Tarek
    Al-Salloum, Yousef
    Siddiqui, Nadeem
    Shubaili, Mohammed A.
    Sallam, Hossam El-Din M.
    MAGAZINE OF CONCRETE RESEARCH, 2016, 68 (22) : 1183 - 1186
  • [4] Influence of fibre volume fraction and fibre orientation on the residual flexural tensile strength of fibre-reinforced concrete
    Minguez Algarra, Jesus
    Gonzalez Cabrera, Dorys
    Vicente Cabrera, Miguel Angel
    HORMIGON Y ACERO, 2019, 70 (287): : 15 - 21
  • [5] Flexural behaviour of semi-precast slabs of fibre-reinforced concrete reinforced with prestressed basalt fibre-reinforced polymer and steel bars
    Mahmoud, Maha R., I
    Wang, Xin
    Bai, Xingyu
    Altayeb, Mohamedelmujtaba
    Liu, Shui
    Moussa, Amr M. A.
    ADVANCES IN STRUCTURAL ENGINEERING, 2024, 27 (15) : 2609 - 2625
  • [6] Effects of nanoparticles on the mechanical behaviour of fibre-reinforced concrete
    Lopes, Joao Pedro
    Ferrari, Vladimir Jose
    Camoes, Aires
    Souza, Aloysio
    Fangueiro, Raul
    PROCEEDINGS OF THE INSTITUTION OF CIVIL ENGINEERS-CONSTRUCTION MATERIALS, 2020, 176 (04) : 161 - 170
  • [7] Numerical modelling of fibre-reinforced concrete fatigue in bending
    Cachim, PB
    Figueiras, JA
    Pereira, PAA
    INTERNATIONAL JOURNAL OF FATIGUE, 2002, 24 (2-4) : 381 - 387
  • [8] Structural behaviour of layered beams with fibre-reinforced LWAC and normal density concrete
    Nes, Linn Grepstad
    Overli, Jan Arve
    MATERIALS AND STRUCTURES, 2016, 49 (1-2) : 689 - 703
  • [9] Effect of fibre aspect ratio on the torsional behaviour of steel fibre-reinforced normal weight concrete and lightweight concrete
    Yap, Soon Poh
    Khaw, Kuan Ren
    Alengaram, U. Johnson
    Jumaat, Mohd Zamin
    ENGINEERING STRUCTURES, 2015, 101 : 24 - 33
  • [10] Modelling and optimisation of the structural performance of lightweight polypropylene fibre-reinforced LECA concrete
    Ja'e, Idris Ahmed
    Muda, Zakaria Che
    Amran, Mugahed
    Syamsir, Agusril
    Amaechi, Chiemela Victor
    Al-Qadami, Ebrahim Hamid Hussein
    Huenchuan, Marco Antonio Diaz
    Avudaiappan, Siva
    RESULTS IN ENGINEERING, 2024, 24