Non-autonomous perturbations for a class of quasilinear elliptic equations on R

被引:11
作者
Alves, M. J. [2 ]
Carriao, P. C. [2 ]
Miyagaki, O. H. [1 ]
机构
[1] Univ Fed Vicosa, Dept Matemat, BR-36571000 Vicosa, MG, Brazil
[2] Univ Fed Minas Gerais, Dept Matemat, BR-30161970 Belo Horizonte, MG, Brazil
关键词
non-autonomous perturbations; Schrodinger equation; p-Laplacian; variational method;
D O I
10.1016/j.jmaa.2008.02.055
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper is concerned with the existence of two positive solutions for a class of quasilinear elliptic equations on R involving the p-Laplacian, with a non-autonomous perturbation. The first solution is obtained as a local minimum in a neighborhood of 0 and the second one by a mountain-pass argument. The special features of the problem here is the "complex" structure of the linear part which, in particular, oblige to work into the space W-1,W- (p) (R). Then one faces problems in the convergence of the sequences of derivatives u'(n) -> u. (C) 2008 Elsevier Inc. All rights reserved.
引用
收藏
页码:186 / 203
页数:18
相关论文
共 42 条
[11]   ALMOST EVERYWHERE CONVERGENCE OF THE GRADIENTS OF SOLUTIONS TO ELLIPTIC AND PARABOLIC EQUATIONS [J].
BOCCARDO, L ;
MURAT, F .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1992, 19 (06) :581-597
[12]  
Borovskii A., 1983, SOV PHYS JETP, V77, P562
[13]   A RELATION BETWEEN POINTWISE CONVERGENCE OF FUNCTIONS AND CONVERGENCE OF FUNCTIONALS [J].
BREZIS, H ;
LIEB, E .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1983, 88 (03) :486-490
[14]  
BREZIS H, 1983, ANAL FUNCTIONNELLE T
[15]   Solutions for a quasilinear Schrodinger equation: a dual approach [J].
Colin, M ;
Jeanjean, L .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2004, 56 (02) :213-226
[16]  
COSTA DG, 1994, ELECT J DIFFERENTIAL, P1
[17]  
COTIZELATI V, 1992, COMMUN PUR APPL MATH, V45, P1217
[18]   Global existence of small solutions to a relativistic nonlinear Schrodinger equation [J].
deBouard, A ;
Hayashi, N ;
Saut, JC .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1997, 189 (01) :73-105
[19]   Soliton solutions for quasilinear Schrodinger equations:: The critical exponential case [J].
do O, Jodo M. B. ;
Miyagaki, Olimpio H. ;
Soares, Sergio H. M. .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2007, 67 (12) :3357-3372
[20]   NONSPREADING WAVE-PACKETS FOR THE CUBIC SCHRODINGER-EQUATION WITH A BOUNDED POTENTIAL [J].
FLOER, A ;
WEINSTEIN, A .
JOURNAL OF FUNCTIONAL ANALYSIS, 1986, 69 (03) :397-408