Non-autonomous perturbations for a class of quasilinear elliptic equations on R

被引:11
作者
Alves, M. J. [2 ]
Carriao, P. C. [2 ]
Miyagaki, O. H. [1 ]
机构
[1] Univ Fed Vicosa, Dept Matemat, BR-36571000 Vicosa, MG, Brazil
[2] Univ Fed Minas Gerais, Dept Matemat, BR-30161970 Belo Horizonte, MG, Brazil
关键词
non-autonomous perturbations; Schrodinger equation; p-Laplacian; variational method;
D O I
10.1016/j.jmaa.2008.02.055
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper is concerned with the existence of two positive solutions for a class of quasilinear elliptic equations on R involving the p-Laplacian, with a non-autonomous perturbation. The first solution is obtained as a local minimum in a neighborhood of 0 and the second one by a mountain-pass argument. The special features of the problem here is the "complex" structure of the linear part which, in particular, oblige to work into the space W-1,W- (p) (R). Then one faces problems in the convergence of the sequences of derivatives u'(n) -> u. (C) 2008 Elsevier Inc. All rights reserved.
引用
收藏
页码:186 / 203
页数:18
相关论文
共 42 条
[1]   Nonlinear perturbations of a periodic elliptic problem with critical growth [J].
Alves, CO ;
Carriao, PC ;
Miyagaki, OH .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2001, 260 (01) :133-146
[2]  
Alves MJ, 2007, ADV NONLINEAR STUD, V7, P579
[3]  
Ambrosetti A, 2003, DISCRETE CONT DYN-A, V9, P55
[4]  
Ambrosetti A., 1973, Journal of Functional Analysis, V14, P349, DOI 10.1016/0022-1236(73)90051-7
[5]  
[Anonymous], 1996, REND SEM MAT U PADOV
[6]   Critical singular problems via concentration-compactness lemma [J].
Assuncao, Ronaldo B. ;
Carriao, Paulo Cesar ;
Miyagaki, Olimpio Hiroshi .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2007, 326 (01) :137-154
[7]   EXISTENCE AND MULTIPLICITY RESULTS FOR SOME SUPERLINEAR ELLIPTIC PROBLEMS ON R(N) [J].
BARTSCH, T ;
WANG, ZQ .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 1995, 20 (9-10) :1725-1741
[8]   NONLINEAR ELECTROMAGNETIC-SPIN WAVES [J].
BASS, FG ;
NASONOV, NN .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 1990, 189 (04) :165-223
[9]  
BERESTYCKI H, 1983, ARCH RATION MECH AN, V82, P313
[10]  
BERESTYCKI H, 1983, CR ACAD SCI I-MATH, V297, P307