共 32 条
Inextendibility of spacetimes and Lorentzian length spaces
被引:24
|作者:
Grant, James D. E.
[1
]
Kunzinger, Michael
[2
]
Saemann, Clemens
[2
]
机构:
[1] Univ Surrey, Dept Math, Guildford, Surrey, England
[2] Univ Vienna, Fac Math, Vienna, Austria
基金:
奥地利科学基金会;
关键词:
Length spaces;
Lorentzian length spaces;
Causality theory;
Synthetic curvature bounds;
Triangle comparison;
Metric geometry;
Inextendibility;
METRIC-MEASURE-SPACES;
TIME;
REGULARITY;
CURVATURE;
THEOREM;
CAUSAL;
D O I:
10.1007/s10455-018-9637-x
中图分类号:
O1 [数学];
学科分类号:
0701 ;
070101 ;
摘要:
We study the low-regularity (in-)extendibility of spacetimes within the synthetic-geometric framework of Lorentzian length spaces developed in Kunzinger and Samann (Ann Glob Anal Geom 54(3):399-447, 2018). To this end, we introduce appropriate notions of geodesics and timelike geodesic completeness and prove a general inextendibility result. Our results shed new light on recent analytic work in this direction and, for the first time, relate low-regularity inextendibility to (synthetic) curvature blow-up.
引用
收藏
页码:133 / 147
页数:15
相关论文