Inextendibility of spacetimes and Lorentzian length spaces

被引:24
|
作者
Grant, James D. E. [1 ]
Kunzinger, Michael [2 ]
Saemann, Clemens [2 ]
机构
[1] Univ Surrey, Dept Math, Guildford, Surrey, England
[2] Univ Vienna, Fac Math, Vienna, Austria
基金
奥地利科学基金会;
关键词
Length spaces; Lorentzian length spaces; Causality theory; Synthetic curvature bounds; Triangle comparison; Metric geometry; Inextendibility; METRIC-MEASURE-SPACES; TIME; REGULARITY; CURVATURE; THEOREM; CAUSAL;
D O I
10.1007/s10455-018-9637-x
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study the low-regularity (in-)extendibility of spacetimes within the synthetic-geometric framework of Lorentzian length spaces developed in Kunzinger and Samann (Ann Glob Anal Geom 54(3):399-447, 2018). To this end, we introduce appropriate notions of geodesics and timelike geodesic completeness and prove a general inextendibility result. Our results shed new light on recent analytic work in this direction and, for the first time, relate low-regularity inextendibility to (synthetic) curvature blow-up.
引用
收藏
页码:133 / 147
页数:15
相关论文
共 32 条