Inextendibility of spacetimes and Lorentzian length spaces

被引:24
|
作者
Grant, James D. E. [1 ]
Kunzinger, Michael [2 ]
Saemann, Clemens [2 ]
机构
[1] Univ Surrey, Dept Math, Guildford, Surrey, England
[2] Univ Vienna, Fac Math, Vienna, Austria
基金
奥地利科学基金会;
关键词
Length spaces; Lorentzian length spaces; Causality theory; Synthetic curvature bounds; Triangle comparison; Metric geometry; Inextendibility; METRIC-MEASURE-SPACES; TIME; REGULARITY; CURVATURE; THEOREM; CAUSAL;
D O I
10.1007/s10455-018-9637-x
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study the low-regularity (in-)extendibility of spacetimes within the synthetic-geometric framework of Lorentzian length spaces developed in Kunzinger and Samann (Ann Glob Anal Geom 54(3):399-447, 2018). To this end, we introduce appropriate notions of geodesics and timelike geodesic completeness and prove a general inextendibility result. Our results shed new light on recent analytic work in this direction and, for the first time, relate low-regularity inextendibility to (synthetic) curvature blow-up.
引用
收藏
页码:133 / 147
页数:15
相关论文
共 32 条
  • [1] Inextendibility of spacetimes and Lorentzian length spaces
    James D. E. Grant
    Michael Kunzinger
    Clemens Sämann
    Annals of Global Analysis and Geometry, 2019, 55 : 133 - 147
  • [2] Lorentzian length spaces
    Kunzinger, Michael
    Saemann, Clemens
    ANNALS OF GLOBAL ANALYSIS AND GEOMETRY, 2018, 54 (03) : 399 - 447
  • [3] Lorentzian length spaces
    Michael Kunzinger
    Clemens Sämann
    Annals of Global Analysis and Geometry, 2018, 54 : 399 - 447
  • [4] Generalized products and Lorentzian length spaces
    Soultanis, Elefterios
    LETTERS IN MATHEMATICAL PHYSICS, 2025, 115 (01)
  • [5] ALEXANDROV'S PATCHWORK AND THE BONNET-MYERS THEOREM FOR LORENTZIAN LENGTH SPACES
    Beran, Tobias
    Napper, Lewis
    Rott, Felix
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2025, : 2713 - 2743
  • [7] On the causal hierarchy of Lorentzian length spaces
    Hau, Luis Ake
    Cabrera Pacheco, Armando J.
    Solis, Didier A.
    CLASSICAL AND QUANTUM GRAVITY, 2020, 37 (21)
  • [8] On conformal Lorentzian length spaces
    Ebrahimi, Neda
    Vatandoost, Mehdi
    Pourkhandani, Rahimeh
    ANALYSIS AND MATHEMATICAL PHYSICS, 2023, 13 (06)
  • [9] On conformal Lorentzian length spaces
    Neda Ebrahimi
    Mehdi Vatandoost
    Rahimeh Pourkhandani
    Analysis and Mathematical Physics, 2023, 13
  • [10] A Bonnet-Myers rigidity theorem for globally hyperbolic Lorentzian length spaces
    Beran, Tobias
    PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2025,