Genuinely multi-dimensional non-dissipative finite-volume schemes for transport

被引:3
|
作者
Despres, Bruno [1 ]
Lagoutiere, Frederic [2 ,3 ]
机构
[1] CEA, DIF DSSI, F-91680 Bruyeres Le Chatel, France
[2] Univ Paris 07, F-75013 Paris, France
[3] Lab Jacques Louis Lions, UMR 7598, F-75013 Paris, France
关键词
multidimensional transport; finite-volume schemes; anti-dissipative schemes; triangular grids;
D O I
10.2478/v10006-007-0026-z
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We develop a new multidimensional finite-volume algorithm for transport equations. This algorithm is both stable and non-dissipative. It is based on a reconstruction of the discrete solution inside each cell at every time step. The proposed reconstruction, which is genuinely multidimensional, allows recovering sharp profiles in both the direction of the transport velocity and the transverse direction. It constitutes an extension of the one-dimensional reconstructions analyzed in (Lagoutiere, 2005; Lagoutiere, 2006).
引用
收藏
页码:321 / 328
页数:8
相关论文
共 50 条
  • [1] MULTI-DIMENSIONAL TRANSFER FUNCTIONS FOR A NON-DISSIPATIVE BURGERS' EQUATION.
    Dyba, Roman
    Zoltogorski, Bronislaw
    Archives of Acoustics, 1986, 11 (03) : 253 - 259
  • [2] Multi-dimensional finite volume scheme for the vorticity transport equations
    Foti, Daniel
    Duraisamy, Karthik
    COMPUTERS & FLUIDS, 2018, 167 : 17 - 32
  • [3] DIAMAGNETISM AND NON-DISSIPATIVE TRANSPORT
    HEUSER, M
    HAJDU, J
    ZEITSCHRIFT FUR PHYSIK, 1974, 270 (04): : 289 - 293
  • [4] Continuous elliptic and multi-dimensional hyperbolic Darcy-flux finite-volume methods
    Edwards, Michael G.
    Zheng, Hongwen
    Lamine, Sadok
    Pal, Mayur
    COMPUTERS & FLUIDS, 2011, 46 (01) : 12 - 22
  • [5] Finite volume schemes for multi-dimensional hyperbolic systems based on the use of bicharacteristics
    Lukáčová-Medviďová M.
    Saibertová-Zatočilová J.
    Applications of Mathematics, 2006, 51 (3) : 205 - 228
  • [6] Higher Order Finite Volume Central Schemes for Multi-dimensional Hyperbolic Problems
    Verma, Prabal Singh
    Mueller, Wolf-Christian
    JOURNAL OF SCIENTIFIC COMPUTING, 2018, 75 (02) : 941 - 969
  • [7] Higher Order Finite Volume Central Schemes for Multi-dimensional Hyperbolic Problems
    Prabal Singh Verma
    Wolf-Christian Müller
    Journal of Scientific Computing, 2018, 75 : 941 - 969
  • [8] A multi-dimensional, robust, and cell-centered finite-volume scheme for the ideal MHD equations
    Tremblin, Pascal
    Bulteau, Solene
    Kokh, Samuel
    Padioleau, Thomas
    Delorme, Maxime
    Strugarek, Antoine
    Gonzalez, Matthias
    Brun, Allan Sacha
    JOURNAL OF COMPUTATIONAL PHYSICS, 2024, 519
  • [9] On the stability of finite-volume schemes on non-uniform meshes
    Bakhvalov, P. A.
    Surnachev, M. D.
    MATHEMATICS AND COMPUTERS IN SIMULATION, 2025, 234 : 1 - 14
  • [10] Finite-volume WENO schemes for three-dimensional conservation laws
    Titarev, VA
    Toro, EF
    JOURNAL OF COMPUTATIONAL PHYSICS, 2004, 201 (01) : 238 - 260