Acid-Sensing Ion Channel 2: Function and Modulation

被引:10
|
作者
Sivils, Andy [1 ]
Yang, Felix [1 ]
Wang, John Q. [1 ]
Chu, Xiang-Ping [1 ]
机构
[1] Univ Missouri, Sch Med, Dept Biomed Sci, Kansas City, MO 64108 USA
关键词
acid-sensing ion channels; ASIC2; function; physiology; pathology; pharmacology; modulation; DORSAL-ROOT GANGLIA; SYNAPTIC PLASTICITY; HUNTINGTONS-DISEASE; SENSITIVE CHANNELS; EXTRACELLULAR PH; SENSORY NEURONS; NMDA RECEPTOR; UP-REGULATION; MOUSE MODEL; ASIC2;
D O I
10.3390/membranes12020113
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Acid-sensing ion channels (ASICs) have an important influence on human physiology and pathology. They are members of the degenerin/epithelial sodium channel family. Four genes encode at least six subunits, which combine to form a variety of homotrimers and heterotrimers. Of these, ASIC1a homotrimers and ASIC1a/2 heterotrimers are most widely expressed in the central nervous system (CNS). Investigations into the function of ASIC1a in the CNS have revealed a wealth of information, culminating in multiple contemporary reviews. The lesser-studied ASIC2 subunits are in need of examination. This review will focus on ASIC2 in health and disease, with discussions of its role in modulating ASIC function, synaptic targeting, cardiovascular responses, and pharmacology, while exploring evidence of its influence in pathologies such as ischemic brain injury, multiple sclerosis, epilepsy, migraines, drug addiction, etc. This information substantiates the ASIC2 protein as a potential therapeutic target for various neurological, psychological, and cerebrovascular diseases.
引用
收藏
页数:21
相关论文
共 50 条
  • [1] The Role of Zinc in Modulating Acid-Sensing Ion Channel Function
    Sun, Amber W. W.
    Wu, Michelle H. H.
    Vijayalingam, Madhumathi
    Wacker, Michael J.
    Chu, Xiang-Ping
    BIOMOLECULES, 2023, 13 (02)
  • [2] Regulating Factors in Acid-Sensing Ion Channel 1a Function
    Wang, Yinghong
    O'Bryant, Zaven
    Wang, Huan
    Huang, Yan
    NEUROCHEMICAL RESEARCH, 2016, 41 (04) : 631 - 645
  • [3] INHIBITORY REGULATION OF ACID-SENSING ION CHANNEL 3 BY ZINC
    Jiang, Q.
    Papasian, C. J.
    Wang, J. Q.
    Xiong, Z. G.
    Chu, X. P.
    NEUROSCIENCE, 2010, 169 (02) : 574 - 583
  • [4] Acid-Sensing Ion Channel 3 in Retinal Function and Survival
    Ettaiche, Mohammed
    Deval, Emmanuel
    Pagnotta, Sophie
    Lazdunski, Michel
    Lingueglia, Eric
    INVESTIGATIVE OPHTHALMOLOGY & VISUAL SCIENCE, 2009, 50 (05) : 2417 - 2426
  • [5] Acid-sensing ion channels in gastrointestinal function
    Holzer, Peter
    NEUROPHARMACOLOGY, 2015, 94 : 72 - 79
  • [6] A molecular view of the function and pharmacology of acid-sensing ion channels
    Vullo, Sabrina
    Kellenberger, Stephan
    PHARMACOLOGICAL RESEARCH, 2020, 154
  • [7] Acid-Sensing Ion Channels in Glial Cells
    Cegielski, Victoria
    Chakrabarty, Rohan
    Ding, Shinghua
    Wacker, Michael J.
    Monaghan-Nichols, Paula
    Chu, Xiang-Ping
    MEMBRANES, 2022, 12 (02)
  • [8] An acid-sensing ion channel that detects ischemic pain
    Naves, LA
    McCleskey, EW
    BRAZILIAN JOURNAL OF MEDICAL AND BIOLOGICAL RESEARCH, 2005, 38 (11) : 1561 - 1569
  • [9] Regulating Factors in Acid-Sensing Ion Channel 1a Function
    Yinghong Wang
    Zaven O’Bryant
    Huan Wang
    Yan Huang
    Neurochemical Research, 2016, 41 : 631 - 645
  • [10] Multiple Modulation of Acid-Sensing Ion Channel 1a by the Alkaloid Daurisoline
    Osmakov, Dmitry I.
    Koshelev, Sergey G.
    Lyukmanova, Ekaterina N.
    Shulepko, Mikhail A.
    Andreev, Yaroslav A.
    Illes, Peter
    Kozlov, Sergey A.
    BIOMOLECULES, 2019, 9 (08)