Network Design to Control Polyimine Vitrimer Properties: Physical Versus Chemical Approach

被引:150
作者
Hajj, Raymond [1 ]
Duval, Antoine [1 ]
Dhers, Sebastien [1 ]
Averous, Luc [1 ]
机构
[1] Univ Strasbourg, UMR CNRS 7515, BioTeam ICPEES ECPM, F-67087 Strasbourg, France
关键词
CROSS-LINK DENSITY; GLASS-TRANSITION; POLYMER NETWORKS; EPOXY VITRIMER; EXCHANGE; REPROCESSABILITY; TRANSIMINATION; THERMOSETS; ROBUST; DIELS;
D O I
10.1021/acs.macromol.0c00453
中图分类号
O63 [高分子化学(高聚物)];
学科分类号
070305 ; 080501 ; 081704 ;
摘要
A family of biobased polyimine elastomeric vitrimers was synthesized by reactions between di- and trifunctional polyetheramines and a furan-based dialdehyde. By varying the triamine to diamine ratio and the molar mass of the diamine, a set of cross-linked networks with similar chemical structures but different cross-link densities was obtained. All these materials exhibit a vitrimeric behavior because of the dynamic nature of the imine bonds. This fundamental study clearly reveals that the cross-link density has a drastic effect on the relaxation properties of the vitrimers. For instance, the relaxation times and the activation energies reduced when the cross-link density of the vitrimer networks decreased. This shows that the relaxation properties of vitrimers can be controlled by the sole modification of the network physical properties without the introduction of a catalyst, a change in chemical structure, or the introduction of additional chemical groups. In addition, a fast dual relaxation process has been clearly evidenced during stress relaxation experiments, which could potentially lead to double relaxation modes based on supramolecular interactions. The selective solubility of these polyimine networks was also demonstrated, opening interesting possibilities for chemical recycling while still offering robustness against aggressive conditions such as highly basic solutions. Finally, the dynamic properties and the high thermal stability of the designed polyimine networks provide an interesting reprocessability and tunable mechanical properties, showing the versatility of this sustainable family of vitrimer materials.
引用
收藏
页码:3796 / 3805
页数:10
相关论文
共 66 条
[1]   Supramolecular Cross-Linked Networks via Host-Guest Complexation with Cucurbit[8]uril [J].
Appel, Eric A. ;
Biedermann, Frank ;
Rauwald, Urs ;
Jones, Samuel T. ;
Zayed, Jameel M. ;
Scherman, Oren A. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2010, 132 (40) :14251-14260
[2]   Covalent Adaptable Networks: Reversible Bond Structures Incorporated in Polymer Networks [J].
Bowman, Christopher N. ;
Kloxin, Christopher J. .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2012, 51 (18) :4272-4274
[3]   Technology development for the production of biobased products from biorefinery carbohydrates-the US Department of Energy's "Top 10" revisited [J].
Bozell, Joseph J. ;
Petersen, Gene R. .
GREEN CHEMISTRY, 2010, 12 (04) :539-554
[4]   Polybutadiene Vitrimers Based on Dioxaborolane Chemistry and Dual Networks with Static and Dynamic Cross-links [J].
Breuillac, Antoine ;
Kassalias, Alexis ;
Nicolay, Renaud .
MACROMOLECULES, 2019, 52 (18) :7102-7113
[5]   Mechanistic Study of Stress Relaxation in Urethane-Containing Polymer Networks [J].
Brutman, Jacob P. ;
Fortman, David J. ;
De Hoe, Guilhem X. ;
Dichtel, William R. ;
Hillmyer, Marc A. .
JOURNAL OF PHYSICAL CHEMISTRY B, 2019, 123 (06) :1432-1441
[6]   Thermally healable and remendable lignin-based materials through Diels - Alder click polymerization [J].
Buono, Pietro ;
Duval, Antoine ;
Averous, Luc ;
Habibi, Youssef .
POLYMER, 2017, 133 :78-88
[7]   Catalytic Control of the Vitrimer Glass Transition [J].
Capelot, Mathieu ;
Unterlass, Miriam M. ;
Tournilhac, Francois ;
Leibler, Ludwik .
ACS MACRO LETTERS, 2012, 1 (07) :789-792
[8]   Metal-Catalyzed Transesterification for Healing and Assembling of Thermosets [J].
Capelot, Mathieu ;
Montarnal, Damien ;
Tournilhac, Francois ;
Leibler, Ludwik .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2012, 134 (18) :7664-7667
[9]   A thermally re-mendable cross-linked polymeric material [J].
Chen, XX ;
Dam, MA ;
Ono, K ;
Mal, A ;
Shen, HB ;
Nutt, SR ;
Sheran, K ;
Wudl, F .
SCIENCE, 2002, 295 (5560) :1698-1702
[10]   Mechanically Robust, Self-Healable, and Reprocessable Elastomers Enabled by Dynamic Dual Cross-Links [J].
Chen, Yi ;
Tang, Zhenghai ;
Liu, Yingjun ;
Wu, Siwu ;
Guo, Baochun .
MACROMOLECULES, 2019, 52 (10) :3805-3812