Identification of cytochrome P450 enzymes responsible for metabolism of cannabidiol by human liver microsomes

被引:224
|
作者
Jiang, Rongrong [1 ]
Yamaori, Satoshi [1 ]
Takeda, Shuso [2 ]
Yamamoto, Ikuo [3 ]
Watanabe, Kazuhito [1 ,4 ]
机构
[1] Hokuriku Univ, Fac Pharmaceut Sci, Dept Hyg Chem, Kanazawa, Ishikawa 9201181, Japan
[2] Daiichi Univ Pharm, Dept Mol Biol, Minami Ku, Fukuoka 8158511, Japan
[3] Kyushu Univ Hlth & Welf, Sch Pharmaceut Sci, Dept Hyg Chem, Nobeoka 8828508, Japan
[4] Hokuriku Univ, Org Frontier Res Prevent Pharmaceut Sci, Kanazawa, Ishikawa 9201181, Japan
关键词
Cannabidiol; Metabolism; Human liver microsomes; Cytochrome P450; CYP3A4; CYP2C19; PLANT CANNABINOIDS; DELTA(9)-TETRAHYDROCANNABINOL; CONSTITUENTS; PHARMACOLOGY; MARIJUANA; SATIVEX;
D O I
10.1016/j.lfs.2011.05.018
中图分类号
R-3 [医学研究方法]; R3 [基础医学];
学科分类号
1001 ;
摘要
Aims: Cannabidiol (CBD), one of the major constituents in marijuana, has been shown to be extensively metabolized by experimental animals and humans. However, human hepatic enzymes responsible for the CBD metabolism remain to be elucidated. In this study, we examined in vitro metabolism of CBD with human liver microsomes (HLMs) to clarify cytochrome P450 (CYP) isoforms involved in the CBD oxidations. Main methods: Oxidations of CBD in HLMs and recombinant human CYP enzymes were analyzed by gas chromatography/mass spectrometry. Key findings: CBD was metabolized by pooled HLMs to eight monohydroxylated metabolites (6 alpha-OH-, 6 beta-OH-, 7-OH-, 1 ''-OH-, 2 ''-OH-, 3 ''-OH-, 4 ''-OH-, and 5 ''-OH-CBDs). Among these metabolites, 6 alpha-OH-, 6 beta-OH-, 7-OH-. and 4 ''-OH-CBDs were the major ones as estimated from the relative abundance of m/z 478, which was a predominant fragment ion of trimethylsilyl derivatives of the metabolites. Seven of 14 recombinant human CYP enzymes examined (CYP1A1, CYP1A2, CYP2C9, CYP2C19, CYP2D6, CYP3A4, and CYP3A5) were capable of metabolizing CBD. The correlations between CYP isoform-specific activities and CBD oxidative activities in 16 individual HLMs indicated that 6 beta-OH- and 4 ''-OH-CBDs were mainly formed by CYP3A4, which was supported by inhibition studies using ketoconazole and an anti-CYP3A4 antibody. The correlation and inhibition studies also showed that CBD 6 alpha-hydroxylation was mainly catalyzed by CYP3A4 and CYP2C19, whereas CBD 7-hydroxylation was predominantly catalyzed by CYP2C19. Significance: This study indicated that CBD was extensively metabolized by HLMs. These results suggest that CYP3A4 and CYP2C19 may be major isoforms responsible for 6 alpha-, 6 beta-, 7-, and/or 4 ''-hydroxylations of CBD in HLMs. (C) 2011 Elsevier Inc. All rights reserved.
引用
收藏
页码:165 / 170
页数:6
相关论文
共 50 条
  • [41] Stereoselective metabolism of endosulfan by human liver microsomes and human cytochrome P450 isoforms
    Lee, Hwa-Gyung
    Kim, Jeong-Han
    Moon, Joon-Kwan
    Chang, Chul-Hee
    Choi, Hoon
    Park, Hee-Won
    Park, Byeong-Soo
    Hwang, Eul-Chul
    Lee, Hye-Suk
    Lee, Young-Deuk
    Liu, Kwang-Hyeon
    DRUG METABOLISM REVIEWS, 2006, 38 : 186 - 186
  • [42] Cytochrome P450 enzymes involved in the metabolism of tetrahydrocannabinols and cannabinol by human hepatic microsomes
    Watanabe, Kazuhito
    Yamaori, Satoshi
    Funahashi, Tatsuya
    Kimura, Toshiyuki
    Yamamoto, Ikuo
    LIFE SCIENCES, 2007, 80 (15) : 1415 - 1419
  • [43] Identification of the cytochrome P450 enzymes responsible for the metabolism of atrazine, terbuthylazine, ametryne, and terbutryne
    Bocker, RH
    Lang, D
    Grothusen, A
    Doehmer, J
    NAUNYN-SCHMIEDEBERGS ARCHIVES OF PHARMACOLOGY, 1997, 355 (04) : 512 - 512
  • [44] RETRACTED ARTICLE: Identification of CYP3A4 as the primary cytochrome P450 responsible for the metabolism of tandospirone by human liver microsomes
    Kiyohi Natsui
    Yoshiko Mizuno
    Naoko Tani
    Masashi Yabuki
    Setsuko Komuro
    European Journal of Drug Metabolism and Pharmacokinetics, 2007, 32 : 131 - 137
  • [45] Retraction Note to: Identification of CYP3A4 as the primary cytochrome P450 responsible for the metabolism of tandospirone by human liver microsomes
    Kiyohi Natsui
    Yoshiko Mizuno
    Naoko Tani
    Masashi Yabuki
    Setsuko Komuro
    European Journal of Drug Metabolism and Pharmacokinetics, 2019, 44 : 853 - 853
  • [46] Inhibition of cytochrome P450 enzymes involved in ketamine metabolism by use of liver microsomes and specific cytochrome P450 enzymes from horses, dogs, and humans
    Moessner, Lone D.
    Schmitz, Andrea
    Theurillat, Regula
    Thormann, Wolfgang
    Mevissen, Meike
    AMERICAN JOURNAL OF VETERINARY RESEARCH, 2011, 72 (11) : 1505 - 1513
  • [47] In Vitro Metabolism of Jaceosidin and Characterization of Cytochrome P450 and UDP-Glucuronosyltransferase Enzymes in Human Liver Microsomes
    Song, Won Young
    Ji, Hye Young
    Baek, Nam-In
    Jeong, Tae-Sook
    Lee, Hye Suk
    ARCHIVES OF PHARMACAL RESEARCH, 2010, 33 (12) : 1985 - 1996
  • [48] In Vitro metabolism of Jaceosidin and characterization of cytochrome P450 and UDP-glucuronosyltransferase enzymes in human liver microsomes
    Won Young Song
    Hye Young Ji
    Nam-In Baek
    Tae-Sook Jeong
    Hye Suk Lee
    Archives of Pharmacal Research, 2010, 33 : 1985 - 1996
  • [49] Determination of cytochrome P450 enzymes involved in the metabolism of (-)-terpinen-4-ol by human liver microsomes
    Miyazawa, M.
    Haigou, R.
    XENOBIOTICA, 2011, 41 (12) : 1056 - 1062
  • [50] IN VITRO METABOLISM OF HOMOEGONOL IN HUMAN LIVER MICROSOMES AND CHARACTERIZATION OF CYTOCHROME P450 AND UDP-GLUCURONOSYLTRANSFERASE ENZYMES
    Kwon, Soon Sang
    Jeong, Hyeon-Uk
    Kim, Ju Hyun
    Lee, Hye Suk
    DRUG METABOLISM REVIEWS, 2015, 47 : 204 - 204