Fundamentals of Recurrent Neural Network (RNN) and Long Short-Term Memory (LSTM) network

被引:2278
|
作者
Sherstinsky, Alex
机构
关键词
RNN; RNN unfolding/unrolling; LSTM; External input gate; Convolutional input context windows; BACKPROPAGATION;
D O I
10.1016/j.physd.2019.132306
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Because of their effectiveness in broad practical applications, LSTM networks have received a wealth of coverage in scientific journals, technical blogs, and implementation guides. However, in most articles, the inference formulas for the LSTM network and its parent, RNN, are stated axiomatically, while the training formulas are omitted altogether. In addition, the technique of "unrolling'' an RNN is routinely presented without justification throughout the literature. The goal of this tutorial is to explain the essential RNN and LSTM fundamentals in a single document. Drawing from concepts in Signal Processing, we formally derive the canonical RNN formulation from differential equations. We then propose and prove a precise statement, which yields the RNN unrolling technique. We also review the difficulties with training the standard RNN and address them by transforming the RNN into the "Vanilla LSTM''1 network through a series of logical arguments. We provide all equations pertaining to the LSTM system together with detailed descriptions of its constituent entities. Albeit unconventional, our choice of notation and the method for presenting the LSTM system emphasizes ease of understanding. As part of the analysis, we identify new opportunities to enrich the LSTM system and incorporate these extensions into the Vanilla LSTM network, producing the most general LSTM variant to date. The target reader has already been exposed to RNNs and LSTM networks through numerous available resources and is open to an alternative pedagogical approach. A Machine Learning practitioner seeking guidance for implementing our new augmented LSTM model in software for experimentation and research will find the insights and derivations in this treatise valuable as well. (C) 2019 Elsevier B.V. All rights reserved.
引用
收藏
页数:28
相关论文
共 50 条
  • [1] Prediction of Indonesian Palm Oil Production Using Long Short-Term Memory Recurrent Neural Network (LSTM-RNN)
    Sugiyarto, Aditya Wisnugraha
    Abadi, Agus Maman
    2019 1ST INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND DATA SCIENCES (AIDAS2019), 2019, : 53 - 57
  • [2] Artificial Intelligence for Sport Actions and Performance Analysis using Recurrent Neural Network (RNN) with Long Short-Term Memory (LSTM)
    Fok, Wilton W. T.
    Chan, Louis C. W.
    Chen, Carol
    ICRAI 2018: PROCEEDINGS OF 2018 4TH INTERNATIONAL CONFERENCE ON ROBOTICS AND ARTIFICIAL INTELLIGENCE -, 2018, : 40 - 44
  • [3] Long short-term memory (LSTM) recurrent neural network for muscle activity detection
    Marco Ghislieri
    Giacinto Luigi Cerone
    Marco Knaflitz
    Valentina Agostini
    Journal of NeuroEngineering and Rehabilitation, 18
  • [4] Long short-term memory (LSTM) recurrent neural network for muscle activity detection
    Ghislieri, Marco
    Cerone, Giacinto Luigi
    Knaflitz, Marco
    Agostini, Valentina
    JOURNAL OF NEUROENGINEERING AND REHABILITATION, 2021, 18 (01)
  • [5] HOURLY DISCHARGE PREDICTION USING LONG SHORT-TERM MEMORY RECURRENT NEURAL NETWORK (LSTM-RNN) IN THE UPPER CITARUM RIVER
    Enung
    Kusuma, Muhammad Syahril Badri
    Kardhana, Hadi
    Suryadi, Yadi
    Rohmat, Faizal Immaddudin Wira
    INTERNATIONAL JOURNAL OF GEOMATE, 2022, 23 (98): : 147 - 154
  • [6] Long Short-Term Memory Recurrent Neural Network Architectures for Large Scale Acoustic Modeling
    Sak, Hasim
    Senior, Andrew
    Beaufays, Francoise
    15TH ANNUAL CONFERENCE OF THE INTERNATIONAL SPEECH COMMUNICATION ASSOCIATION (INTERSPEECH 2014), VOLS 1-4, 2014, : 338 - 342
  • [7] Work in Progress Level Prediction with Long Short-Term Memory Recurrent Neural Network
    Gallina, Viola
    Lingitz, Lukas
    Breitschopf, Johannes
    Zudor, Elisabeth
    Sihn, Wilfried
    10TH CIRP SPONSORED CONFERENCE ON DIGITAL ENTERPRISE TECHNOLOGIES (DET 2020) - DIGITAL TECHNOLOGIES AS ENABLERS OF INDUSTRIAL COMPETITIVENESS AND SUSTAINABILITY, 2021, 54 : 136 - 141
  • [8] Long short-term memory recurrent neural network for pharmacokinetic-pharmacodynamic modeling
    Liu, Xiangyu
    Liu, Chao
    Huang, Ruihao
    Zhu, Hao
    Liu, Qi
    Mitra, Sunanda
    Wang, Yaning
    INTERNATIONAL JOURNAL OF CLINICAL PHARMACOLOGY AND THERAPEUTICS, 2021, 59 (02) : 138 - 146
  • [9] Predictive analysis of RNN, GBM and LSTM network for short-term wind power forecasting
    Srivastava, Tushar
    Vedanshu
    Tripathi, M. M.
    JOURNAL OF STATISTICS & MANAGEMENT SYSTEMS, 2020, 23 (01) : 33 - 47
  • [10] A CNN-RNN Neural Network Join Long Short-Term Memory For Crowd Counting and Density Estimation
    Fu, Jingnan
    Yang, Hongbo
    Liu, Ping
    Hu, Yuzhen
    PROCEEDINGS OF THE 2018 IEEE INTERNATIONAL CONFERENCE ON ADVANCED MANUFACTURING (IEEE ICAM), 2018, : 471 - 474