Existence of solutions to a new model of biological pattern formation

被引:14
作者
Alber, M [1 ]
Hentschel, HGE
Kazmierczak, B
Newman, SA
机构
[1] Univ Notre Dame, Dept Math, Notre Dame, IN 46556 USA
[2] Emory Univ, Dept Phys, Atlanta, GA 30322 USA
[3] Inst Fundamental Technol Res, PL-00049 Warsaw, Poland
[4] New York Med Coll, Dept Cell Biol & Anat, Valhalla, NY 10595 USA
基金
美国国家科学基金会;
关键词
D O I
10.1016/j.jmaa.2004.11.026
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we study the existence of classical solutions to a new model of skeletal development in the vertebrate limb. The model incorporates a general term describing adhesion interaction between cells and fibronectin, an extracellular matrix molecule secreted by the cells, as well as two secreted, diffusible regulators of fibronectin production, the positively-acting differentiation factor ("activator") TGF-beta, and a negatively-acting factor ("inhibitor"). Together, these terms constitute a pattern forming system of equations. We analyze the conditions guaranteeing that smooth solutions exist globally in time. We prove that these conditions can be significantly relaxed if we add a diffusion term to the equation describing the evolution of fibronectin. (c) 2004 Elsevier Inc. All rights reserved.
引用
收藏
页码:175 / 194
页数:20
相关论文
共 32 条
[1]   Stability of n-dimensional patterns in a generalized Turing system:: implications for biological pattern formation [J].
Alber, M ;
Glimm, T ;
Hentschel, HGE ;
Kazmierczak, B ;
Newman, SA .
NONLINEARITY, 2005, 18 (01) :125-138
[2]   INVARIANT SETS AND EXISTENCE THEOREMS FOR SEMI-LINEAR PARABOLIC AND ELLIPTIC SYSTEMS [J].
AMANN, H .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1978, 65 (02) :432-467
[3]  
[Anonymous], 2002, Can. Appl. Math. Q.
[4]   SOME APPLICATIONS OF INVARIANCE FOR PARABOLIC-SYSTEMS [J].
BEBERNES, JW ;
CHUEH, KN ;
FULKS, W .
INDIANA UNIVERSITY MATHEMATICS JOURNAL, 1979, 28 (02) :269-277
[5]   POSITIVELY INVARIANT REGIONS FOR SYSTEMS OF NONLINEAR DIFFUSION EQUATIONS [J].
CHUEH, KN ;
CONLEY, CC ;
SMOLLER, JA .
INDIANA UNIVERSITY MATHEMATICS JOURNAL, 1977, 26 (02) :373-392
[6]   Pattern formation in reaction-diffusion models with nonuniform domain growth [J].
Crampin, EJ ;
Hackborn, WW ;
Maini, PK .
BULLETIN OF MATHEMATICAL BIOLOGY, 2002, 64 (04) :747-769
[7]   Reaction and diffusion on growing domains: Scenarios for robust pattern formation [J].
Crampin, EJ ;
Gaffney, EA ;
Maini, PK .
BULLETIN OF MATHEMATICAL BIOLOGY, 1999, 61 (06) :1093-1120
[8]   A mathematical model for outgrowth and spatial patterning of the vertebrate limb bud [J].
Dillon, R ;
Othmer, HG .
JOURNAL OF THEORETICAL BIOLOGY, 1999, 197 (03) :295-330
[9]   Mathematical analysis of a model or the initiation of angiogenesis [J].
Fontelos, MA ;
Friedman, A ;
Hu, B .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2002, 33 (06) :1330-1355
[10]   THE MECHANISM OF PRECARTILAGE MESENCHYMAL CONDENSATION - A MAJOR ROLE FOR INTERACTION OF THE CELL-SURFACE WITH THE AMINO-TERMINAL HEPARIN-BINDING DOMAIN OF FIBRONECTIN [J].
FRENZ, DA ;
JAIKARIA, NS ;
NEWMAN, SA .
DEVELOPMENTAL BIOLOGY, 1989, 136 (01) :97-103