A gradient-type algorithm with backward inertial steps associated to a nonconvex minimization problem

被引:9
作者
Alecsa, Cristian Daniel [1 ,2 ]
Laszlo, Szilard Csaba [3 ]
Viorel, Adrian [3 ]
机构
[1] Romanian Acad, Tiberiu Popoviciu Inst Numer Anal, Cluj Napoca, Romania
[2] Babes Bolyai Univ, Dept Math, Cluj Napoca, Romania
[3] Tech Univ Cluj Napoca, Dept Math, Str Memorandumului 28, Cluj Napoca 400114, Romania
关键词
Inertial algorithm; Nonconvex optimization; Kurdyka-Lojasiewicz inequality; Convergence rate; CONVERGENCE;
D O I
10.1007/s11075-019-00765-z
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We investigate an algorithm of gradient type with a backward inertial step in connection with the minimization of a nonconvex differentiable function. We show that the generated sequences converge to a critical point of the objective function, if a regularization of the objective function satisfies the Kurdyka-Lojasiewicz property. Further, we provide convergence rates for the generated sequences and the objective function values formulated in terms of the Lojasiewicz exponent. Finally, some numerical experiments are presented in order to compare our numerical scheme with some algorithms well known in the literature.
引用
收藏
页码:485 / 512
页数:28
相关论文
共 29 条
[1]  
[Anonymous], 1964, COMP MATH MATH PHYS+
[2]   On the convergence of the proximal algorithm for nonsmooth functions involving analytic features [J].
Attouch, Hedy ;
Bolte, Jerome .
MATHEMATICAL PROGRAMMING, 2009, 116 (1-2) :5-16
[3]   Fast convergence of inertial dynamics and algorithms with asymptotic vanishing viscosity [J].
Attouch, Hedy ;
Chbani, Zaki ;
Peypouquet, Juan ;
Redont, Patrick .
MATHEMATICAL PROGRAMMING, 2018, 168 (1-2) :123-175
[4]   Convergence of descent methods for semi-algebraic and tame problems: proximal algorithms, forward-backward splitting, and regularized Gauss-Seidel methods [J].
Attouch, Hedy ;
Bolte, Jerome ;
Svaiter, Benar Fux .
MATHEMATICAL PROGRAMMING, 2013, 137 (1-2) :91-129
[5]   Proximal Alternating Minimization and Projection Methods for Nonconvex Problems: An Approach Based on the Kurdyka-Lojasiewicz Inequality [J].
Attouch, Hedy ;
Bolte, Jerome ;
Redont, Patrick ;
Soubeyran, Antoine .
MATHEMATICS OF OPERATIONS RESEARCH, 2010, 35 (02) :438-457
[6]  
Aujol J.-F., ARXIV180505719
[7]   On damped second-order gradient systems [J].
Begout, Pascal ;
Bolte, Jerome ;
Jendoubi, Mohamed Ali .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2015, 259 (07) :3115-3143
[8]  
Bo R.I., ARXIV180101994
[9]   THE LOJASIEWICZ INEQUALITY FOR NONSMOOTH SUBANALYTIC FUNCTIONS WITH APPLICATIONS TO SUBGRADIENT DYNAMICAL SYSTEMS [J].
Bolte, Jerome ;
Daniilidis, Aris ;
Lewis, Adrian .
SIAM JOURNAL ON OPTIMIZATION, 2007, 17 (04) :1205-1223
[10]   Clarke subgradients of stratifiable functions [J].
Bolte, Jerome ;
Daniilidis, Aris ;
Lewis, Adrian ;
Shiota, Masahiro .
SIAM JOURNAL ON OPTIMIZATION, 2007, 18 (02) :556-572