Digital Quantum Simulation of Open Quantum Systems Using Quantum Imaginary-Time Evolution

被引:0
作者
Kamakari, Hirsh [1 ]
Sun, Shi-Ning [1 ]
Motta, Mario [2 ]
Minnich, Austin J. [1 ]
机构
[1] CALTECH, Div Engn & Appl Sci, Pasadena, CA 91125 USA
[2] IBM Quantum, IBM Res Almaden, San Jose, CA 95120 USA
来源
PRX QUANTUM | 2022年 / 3卷 / 01期
基金
美国国家科学基金会;
关键词
!text type='PYTHON']PYTHON[!/text] FRAMEWORK; DYNAMICS; QUTIP; KRAUS;
D O I
10.1103/PRXQuantum3.010320
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Quantum simulation on emerging quantum hardware is a topic of intense interest. While many studies focus on computing ground-state properties or simulating unitary dynamics of closed systems, open quantum systems are an interesting target of study owing to their ubiquity and rich physical behavior. However, their nonunitary dynamics are also not natural to simulate on digital quantum devices. Here, we report algorithms for the digital quantum simulation of the dynamics of open quantum systems governed by a Lindblad equation using adaptations of the quantum imaginary-time evolution algorithm. We demonstrate the algorithms on IBM Quantum's hardware with simulations of the spontaneous emission of a two-level system and the dissipative transverse field Ising model. Our work advances efforts to simulate the dynamics of open quantum systems on quantum hardware.
引用
收藏
页数:10
相关论文
共 62 条
[1]  
Aleksandrowicz G., 2019, METHOD PRODUCING HUM
[2]   Finding the Kraus decomposition from a master equation and vice versa [J].
Andersson, Erika ;
Cresser, James D. ;
Hall, Michael J. W. .
JOURNAL OF MODERN OPTICS, 2007, 54 (12) :1695-1716
[3]  
Arute F., 2020, ARXIV201007965
[4]   Universal simulation of Markovian quantum dynamics [J].
Bacon, Dave ;
Childs, Andrew M. ;
Chuang, Isaac L. ;
Kempe, Julia ;
Leung, Debbie W. ;
Zhou, Xinlan .
Physical Review A. Atomic, Molecular, and Optical Physics, 2001, 64 (06) :1-062302
[5]   Digital quantum simulation of fermionic models with a superconducting circuit [J].
Barends, R. ;
Lamata, L. ;
Kelly, J. ;
Garcia-Alvarez, L. ;
Fowler, A. G. ;
Megrant, A. ;
Jeffrey, E. ;
White, T. C. ;
Sank, D. ;
Mutus, J. Y. ;
Campbell, B. ;
Chen, Yu ;
Chen, Z. ;
Chiaro, B. ;
Dunsworth, A. ;
Hoi, I. -C. ;
Neill, C. ;
O'Malley, P. J. J. ;
Quintana, C. ;
Roushan, P. ;
Vainsencher, A. ;
Wenner, J. ;
Solano, E. ;
Martinis, John M. .
NATURE COMMUNICATIONS, 2015, 6
[6]  
Bharti K., 2021, Reviews of Modern Physics
[7]   Training Variational Quantum Algorithms Is NP-Hard [J].
Bittel, Lennart ;
Kliesch, Martin .
PHYSICAL REVIEW LETTERS, 2021, 127 (12)
[8]  
Bravyi S., 2020, ARXIV200614044
[9]   Trading Classical and Quantum Computational Resources [J].
Bravyi, Sergey ;
Smith, Graeme ;
Smolin, John A. .
PHYSICAL REVIEW X, 2016, 6 (02)
[10]  
Breuer H.-P., 2007, The Theory of Open Quantum Systems