Pathwise versions of the Burkholder-Davis-Gundy inequality

被引:18
作者
Beiglboeck, Mathias [1 ]
Siorpaes, Pietro [1 ]
机构
[1] Univ Vienna, Fac Math, A-1090 Vienna, Austria
基金
奥地利科学基金会;
关键词
Burkholder-Davis-Gundy; martingale inequalities; pathwise hedging; MARTINGALE; MAXIMUM;
D O I
10.3150/13-BEJ570
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We present a new proof of the Burkholder-Davis-Gundy inequalities for 1 <= p < infinity. The novelty of our method is that these martingale inequalities are obtained as consequences of elementary deterministic counterparts. The latter have a natural interpretation in terms of robust hedging.
引用
收藏
页码:360 / 373
页数:14
相关论文
共 32 条
[1]   A MODEL-FREE VERSION OF THE FUNDAMENTAL THEOREM OF ASSET PRICING AND THE SUPER-REPLICATION THEOREM [J].
Acciaio, B. ;
Beiglboeck, M. ;
Penkner, F. ;
Schachermayer, W. .
MATHEMATICAL FINANCE, 2016, 26 (02) :233-251
[2]   A TRAJECTORIAL INTERPRETATION OF DOOB'S MARTINGALE INEQUALITIES [J].
Acciaio, B. ;
Beiglboeck, M. ;
Penkner, F. ;
Schachermayer, W. ;
Temme, J. .
ANNALS OF APPLIED PROBABILITY, 2013, 23 (04) :1494-1505
[3]  
[Anonymous], 2000, CAMBRIDGE MATH LIB
[4]  
Beiglbock M., 2014, ARXIV14014698
[5]   Model-independent bounds for option prices-a mass transport approach [J].
Beiglboeck, Mathias ;
Henry-Labordere, Pierre ;
Penkner, Friedrich .
FINANCE AND STOCHASTICS, 2013, 17 (03) :477-501
[6]  
Bouchard B., 2013, ARXIV13056008
[7]   Robust hedging of barrier options [J].
Brown, H ;
Hobson, D ;
Rogers, LCG .
MATHEMATICAL FINANCE, 2001, 11 (03) :285-314
[8]   MARTINGALE TRANSFORMS [J].
BURKHOLD.DL .
ANNALS OF MATHEMATICAL STATISTICS, 1966, 37 (06) :1494-&
[9]   The best constant in the Davis inequality for the expectation of the martingale square function [J].
Burkholder, DL .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2002, 354 (01) :91-105
[10]   EXTRAPOLATION AND INTERPOLATION OF QUASI-LINEAR OPERATORS ON MARTINGALES [J].
BURKHOLDER, DL ;
GUNDY, RF .
ACTA MATHEMATICA UPPSALA, 1970, 124 (3-4) :249-+