Monotonicity formulas for the first eigenvalue of the weighted p-Laplacian under the Ricci-harmonic flow

被引:10
作者
Abolarinwa, Abimbola [1 ]
Adebimpe, Olukayode [1 ]
Bakare, Emmanuel A. [2 ]
机构
[1] Landmark Univ, Dept Phys Sci, Omu Aran, Nigeria
[2] Fed Univ Oye, Dept Math, Nigeria, Oye Ekiti, Nigeria
关键词
Ricci harmonic flow; Laplace-Beltrami operator; Eigenvalue; Monotonicity; Ricci solitons; GEOMETRIC OPERATORS; EVOLUTION;
D O I
10.1186/s13660-019-1961-6
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let p,phi be the weighted p-Laplacian defined on a smooth metric measure space. We study the evolution and monotonicity formulas for the first eigenvalue, 1=(p,phi), of p,phi under the Ricci-harmonic flow. We derive some monotonic quantities involving the first eigenvalue, and as a consequence, this shows that 1 is monotonically nondecreasing and almost everywhere differentiable along the flow existence.
引用
收藏
页数:16
相关论文
共 26 条
[1]  
Abolarinwa A., 2016, ARXIV160501882MATHDG
[2]  
Abolarinwa A., SPECTRUM WEIGH UNPUB
[3]   Eigenvalues of the weighted Laplacian under the extended Ricci flow [J].
Abolarinwa, Abimbola .
ADVANCES IN GEOMETRY, 2019, 19 (01) :131-143
[5]  
[Anonymous], 1984, Grundlehren der Mathematischen Wissenschaften
[6]  
[Anonymous], ARXIVMATH0211159
[7]  
Azami S, 2018, J INDONES MATH SOC, V24, P51
[8]   Monotonicity of eigenvalues of Witten-Laplace operator along the Ricci-Bourguignon flow [J].
Azami, Shahroud .
AIMS MATHEMATICS, 2017, 2 (02) :230-243
[9]   First eigenvalues of geometric operators under the Ricci flow [J].
Cao, Xiaodong .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2008, 136 (11) :4075-4078
[10]  
Cao XD, 2007, MATH ANN, V337, P435, DOI 10.1007/s00208-006-0043-5