New approach for the existence and uniqueness of periodic solutions to p-Laplacian prescribed mean curvature equations

被引:2
|
作者
Du, Bo [1 ]
Ge, Weigao [2 ]
机构
[1] Huaiyin Normal Univ, Dept Math, Huaian 223300, Jiangsu, Peoples R China
[2] Beijing Inst Technol, Dept Math, Beijing 100081, Peoples R China
来源
BOUNDARY VALUE PROBLEMS | 2016年
关键词
generalized Mawhin's continuation theorem; periodic solution; p-Laplacian; FUNCTIONAL-DIFFERENTIAL EQUATION; DEVIATING ARGUMENT; RAYLEIGH EQUATIONS; LIENARD EQUATION;
D O I
10.1186/s13661-016-0689-1
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Using a generalized Mawhin continuation theorem, we obtain some sufficient conditions which guarantee the existence and uniqueness of periodic solutions for two types of prescribed mean curvature p-Laplacian equations. Using a generalized Mawhin continuation theorem, we obtain some sufficient conditions which guarantee the existence and uniqueness of periodic solutions for two types of prescribed mean curvature p-Laplacian equations.
引用
收藏
页数:16
相关论文
共 50 条
  • [21] Existence and uniqueness of periodic solutions for a p-Laplacian Duffing equation with a deviating argument
    Gao, Fabao
    Lu, Shiping
    Zhang, Wei
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2009, 70 (10) : 3567 - 3574
  • [22] Uniqueness of Periodic Solution for a Class of Lienard p-Laplacian Equations
    Cao, Fengjuan
    Han, Zhenlai
    Zhao, Ping
    Sun, Shurong
    ADVANCES IN DIFFERENCE EQUATIONS, 2010, : 1 - 14
  • [23] On the existence of multiple periodic solutions for the p-Laplacian
    Lü, HS
    INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS, 2004, 35 (10): : 1185 - 1199
  • [24] Existence and uniqueness of positive solutions for the Neumann p-Laplacian
    Gasinski, Leszek
    Papageorgiou, Nikolaos S.
    POSITIVITY, 2013, 17 (02) : 309 - 332
  • [25] EXISTENCE OF PERIODIC SOLUTIONS FOR TWO CLASSES OF SECOND ORDER P-LAPLACIAN DIFFERENTIAL EQUATIONS
    Han, Xiaoling
    Yang, Hujun
    JOURNAL OF APPLIED ANALYSIS AND COMPUTATION, 2023, 13 (01): : 81 - 94
  • [26] Novel existence and uniqueness criteria for periodic solutions of a Duffing type p-Laplacian equation
    Wang, Yong
    APPLIED MATHEMATICS LETTERS, 2010, 23 (04) : 436 - 439
  • [27] Periodic solutions of p-Laplacian equations with singularities
    Shipin Lu
    Tao Zhong
    Yajing Gao
    Advances in Difference Equations, 2016
  • [28] On the existence of periodic solutions for p-Laplacian generalized Lienard equation
    Cheung, WS
    Ren, JL
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2005, 60 (01) : 65 - 75
  • [29] Existence of periodic solutions of second order nonlinear p-Laplacian difference equations
    Liu, X.
    Shi, H. P.
    Zhang, Y. B.
    ACTA MATHEMATICA HUNGARICA, 2011, 133 (1-2) : 148 - 165
  • [30] Existence of periodic solutions of second order nonlinear p-Laplacian difference equations
    X. Liu
    H. P. Shi
    Y. B. Zhang
    Acta Mathematica Hungarica, 2011, 133 : 148 - 165