Scaling transformation of random walk and generalized statistics

被引:2
作者
Oliveira, FA
Cordeiro, JA
Chaves, AS
Mello, BA
Xavier, IM
机构
[1] Univ Brasilia, Inst Phys, BR-70919970 Brasilia, DF, Brazil
[2] Univ Brasilia, Int Ctr Condensed Matter Phys, BR-70919970 Brasilia, DF, Brazil
[3] Catholic Univ Brasilia, Dept Phys, BR-72030170 Brasilia, DF, Brazil
[4] Univ Fed Pernambuco, Dept Stat, BR-50670901 Recife, PE, Brazil
来源
PHYSICA A | 2001年 / 295卷 / 1-2期
关键词
scaling transformation; random walks; entropy;
D O I
10.1016/S0378-4371(01)00074-7
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We use a decimation procedure in order to obtain the dynamical renormalization group transformation (RGT) properties of random walk distribution in a 1 + 1 lattice. We obtain an equation similar to the Chapman-Kolmogorov equation. First we show the existence of invariants of the RGT, and that the Tsallis distribution R-q(x) = [1 + b(q - 1)x(2)](1/(1-q)) (q >1) is a quasi-invariant of the RGT, We obtain the map q ' = f(q) from the RGT and show that this map has two fixed points: q = 1, attractor, and q = 2, repellor, which are the Gaussian and the Lorentzian, respectively. Finally we use those concepts to show that the nonadditivity of the Tsallis entropy needs to be reviewed. (C) 2001 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:201 / 208
页数:8
相关论文
共 32 条
  • [1] Breakdown of exponential sensitivity to initial conditions: Role of the range of interactions
    Anteneodo, C
    Tsallis, C
    [J]. PHYSICAL REVIEW LETTERS, 1998, 80 (24) : 5313 - 5316
  • [2] Anomalous diffusion as a signature of a collapsing phase in two-dimensional self-gravitating systems
    Antoni, M
    Torcini, A
    [J]. PHYSICAL REVIEW E, 1998, 57 (06) : R6233 - R6236
  • [3] Barabasi A-Ls, 1995, FRACTAL CONCEPTS SUR, DOI [10.1017/CBO9780511599798, DOI 10.1017/CBO9780511599798]
  • [4] Microscopic dynamics of the nonlinear Fokker-Planck equation: A phenomenological model
    Borland, L
    [J]. PHYSICAL REVIEW E, 1998, 57 (06): : 6634 - 6642
  • [5] ANOMALOUS DIFFUSION IN DISORDERED MEDIA - STATISTICAL MECHANISMS, MODELS AND PHYSICAL APPLICATIONS
    BOUCHAUD, JP
    GEORGES, A
    [J]. PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 1990, 195 (4-5): : 127 - 293
  • [6] A fractional diffusion equation to describe Levy flights
    Chaves, AS
    [J]. PHYSICS LETTERS A, 1998, 239 (1-2) : 13 - 16
  • [7] Morphology of growth by random walk deposition
    Cordeiro, JA
    Lima, MVBT
    Dias, RM
    Oliveira, FA
    [J]. PHYSICA A, 2001, 295 (1-2): : 209 - 214
  • [8] GENERALIZED STATISTICAL-MECHANICS - CONNECTION WITH THERMODYNAMICS
    CURADO, EMF
    TSALLIS, C
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1991, 24 (02): : L69 - L72
  • [9] CURADO EMF, 1992, J PHYS A-MATH GEN, V25, P1019, DOI 10.1088/0305-4470/25/4/038
  • [10] CURADO EMF, 1991, J PHYS A, V24, P3178