Non-Return Microvalve Using Low Temperature Co-Fired Ceramic (LTCC)

被引:0
|
作者
Devrukhakar, Mayur [1 ]
Dayaphule, Mangesh [1 ]
Chaware, Varsha [1 ]
Giramkar, Vijaya [1 ]
Joseph, Shany [1 ]
Phatak, Girish [1 ]
机构
[1] C MET, Off Pashan Rd, Pune 411008, Maharashtra, India
来源
2015 2ND INTERNATIONAL SYMPOSIUM ON PHYSICS AND TECHNOLOGY OF SENSORS | 2015年
关键词
LTCC; micro valve; microfluidic channels; unidirectional; non-return; SYSTEM;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
LTCC is a known suitable platform for microfluidic systems. We have developed actuation-less non-return valve for gases and liquids, which is based upon the inlet and reverse pressure. This work compares three different designs of such valves. In these designs, top lid and bottom cavity layer together forms micro fluidic channel, through which fluid or gas can flow. The pressure based movable ceramic part and the matching cavity at the inlet plays an important role in the valve designs. The designs are such that the liquid or gas flows from inlet to outlet without any difficulty. However, if the liquid or gas flows in reverse direction (i.e. from outlet to inlet) the movable part blocks the path at the cavity and opposes the liquid or gas flow through the channel. Two designs are based upon vertical motion of the movable ceramic part and has a 'O' ring to rest to movable part at the inlet side. One of these designs usesZirconia (ZrO2) ball (design 2) while another has square shape (design 3) as the movable parts. Yet another design (design 1) is based upon sliding motion and teflon coating for lubrication. The initial testing using pressurised air (up to 6 bar) indicated that the reverse direction blockade is the best for design 2, which has shown leak rate of 3 ml min(-1) at 6bar pressure. This is followed by design 3 and by design 1, which have shown leak rates of 30 ml min(-1) and100ml min(-1) respectively.
引用
收藏
页码:289 / 292
页数:4
相关论文
共 50 条
  • [11] Preliminary Model and Technology of Piezoelectric Low Temperature Co-fired Ceramic (LTCC) Uniaxial Accelerometer
    Jurkow, Dominik
    Dabrowski, Arkadiusz
    Golonka, Leszek
    Zawada, Tomasz
    INTERNATIONAL JOURNAL OF APPLIED CERAMIC TECHNOLOGY, 2013, 10 (03) : 395 - 404
  • [12] Sintering Behavior, Properties, and Applications of Co-Fired Piezoelectric/Low Temperature Co-Fired Ceramic (PZT-SKN/LTCC) Multilayer Ceramics
    Zhang, Wenli
    Eitel, Richard E.
    INTERNATIONAL JOURNAL OF APPLIED CERAMIC TECHNOLOGY, 2013, 10 (02) : 354 - 364
  • [13] The mechanism and prevention of conductor fracture on printed multilayer ceramic and low temperature co-fired ceramic (LTCC) substrates
    Zhou, JM
    Tsai, S
    Badgett, J
    Coapman, C
    2001 INTERNATIONAL SYMPOSIUM ON MICROELECTRONICS, PROCEEDINGS, 2001, 4587 : 697 - 702
  • [14] Overview on low temperature co-fired ceramic sensors
    Jurkow, Dominik
    Maeder, Thomas
    Dabrowski, Arkadiusz
    Zarnik, Marina Santo
    Belavic, Darko
    Bartsch, Heike
    Mueller, Jens
    SENSORS AND ACTUATORS A-PHYSICAL, 2015, 233 : 125 - 146
  • [15] The development of a fully integrated micro-channel fuel processor using low temperature co-fired ceramic (LTCC)
    Park, Jung-Juu
    Shin, Yeena
    Oh, Jeong-Hoon
    Chung, Chan-Hwa
    Huh, Yong-Jung
    Haam, Seungjoo
    JOURNAL OF INDUSTRIAL AND ENGINEERING CHEMISTRY, 2009, 15 (05) : 618 - 623
  • [16] Monolithic Microwave-Microfluidic Sensors Made with Low Temperature Co-Fired Ceramic (LTCC) Technology
    Malecha, Karol
    Jasinska, Laura
    Grytsko, Anna
    Drzozga, Kamila
    Slobodzian, Piotr
    Cabaj, Joanna
    SENSORS, 2019, 19 (03):
  • [17] Studies on laser ablation of low temperature co-fired ceramics (LTCC)
    Yung, Winco K. C.
    Zhu, Jijun
    MICROELECTRONICS INTERNATIONAL, 2007, 24 (03) : 27 - 33
  • [18] Studies on laser ablation of low temperature co-fired ceramics (LTCC)
    Zhu, Jijun
    Yung, Winco K. C.
    INTERNATIONAL JOURNAL OF ADVANCED MANUFACTURING TECHNOLOGY, 2009, 42 (7-8) : 696 - 702
  • [19] Studies on laser ablation of low temperature co-fired ceramics (LTCC)
    Jijun Zhu
    Winco K C Yung
    The International Journal of Advanced Manufacturing Technology, 2009, 42 : 696 - 702
  • [20] Integrated wireless microfluidic liquid sensors based on low temperature co-fired ceramic (LTCC) technology
    He, Tingting
    Ma, Mingsheng
    Li, Haogeng
    Zhang, Faqiang
    Liu, Feng
    Liu, Zhifu
    Li, Xiaogan
    SENSORS AND ACTUATORS A-PHYSICAL, 2022, 346