Non-Return Microvalve Using Low Temperature Co-Fired Ceramic (LTCC)

被引:0
|
作者
Devrukhakar, Mayur [1 ]
Dayaphule, Mangesh [1 ]
Chaware, Varsha [1 ]
Giramkar, Vijaya [1 ]
Joseph, Shany [1 ]
Phatak, Girish [1 ]
机构
[1] C MET, Off Pashan Rd, Pune 411008, Maharashtra, India
来源
2015 2ND INTERNATIONAL SYMPOSIUM ON PHYSICS AND TECHNOLOGY OF SENSORS | 2015年
关键词
LTCC; micro valve; microfluidic channels; unidirectional; non-return; SYSTEM;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
LTCC is a known suitable platform for microfluidic systems. We have developed actuation-less non-return valve for gases and liquids, which is based upon the inlet and reverse pressure. This work compares three different designs of such valves. In these designs, top lid and bottom cavity layer together forms micro fluidic channel, through which fluid or gas can flow. The pressure based movable ceramic part and the matching cavity at the inlet plays an important role in the valve designs. The designs are such that the liquid or gas flows from inlet to outlet without any difficulty. However, if the liquid or gas flows in reverse direction (i.e. from outlet to inlet) the movable part blocks the path at the cavity and opposes the liquid or gas flow through the channel. Two designs are based upon vertical motion of the movable ceramic part and has a 'O' ring to rest to movable part at the inlet side. One of these designs usesZirconia (ZrO2) ball (design 2) while another has square shape (design 3) as the movable parts. Yet another design (design 1) is based upon sliding motion and teflon coating for lubrication. The initial testing using pressurised air (up to 6 bar) indicated that the reverse direction blockade is the best for design 2, which has shown leak rate of 3 ml min(-1) at 6bar pressure. This is followed by design 3 and by design 1, which have shown leak rates of 30 ml min(-1) and100ml min(-1) respectively.
引用
收藏
页码:289 / 292
页数:4
相关论文
共 50 条
  • [1] Low temperature co-fired ceramic (LTCC)-based biosensor for continuous glucose monitoring
    Malecha, Karol
    Pijanowska, Dorota G.
    Golonka, Leszek J.
    Kurek, Piotr
    SENSORS AND ACTUATORS B-CHEMICAL, 2011, 155 (02): : 923 - 929
  • [2] Fabrication of a millinewton force sensor using low temperature co-fired ceramic (LTCC) technology
    Birol, Hansu
    Maeder, Thomas
    Nadzeyka, Ingo
    Boers, Marc
    Ryser, Peter
    SENSORS AND ACTUATORS A-PHYSICAL, 2007, 134 (02) : 334 - 338
  • [3] The development of micro-fuel processor using low temperature co-fired ceramic (LTCC)
    Shin, Yeena
    Kim, Okyoun
    Hong, Jong-Chul
    Oh, Jeong-Hoon
    Kim, Woo-Jae
    Haam, Seungjoo
    Chung, Chan-Hwa
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2006, 31 (13) : 1925 - 1933
  • [4] An LC Wireless Microfluidic Sensor Based on Low Temperature Co-Fired Ceramic (LTCC) Technology
    Liang, Yongyuan
    Ma, Mingsheng
    Zhang, Faqiang
    Liu, Feng
    Liu, Zhifu
    Wang, Dong
    Li, Yongxiang
    SENSORS, 2019, 19 (05)
  • [5] Structuration and fabrication of sensors based on LTCC (Low temperature co-fired ceramic) technology
    Birol, Hansu
    Maeder, Thomas
    Jacq, Caroline
    Corradini, Giancarlo
    Boers, Marc
    Straessler, Sigfrid
    Ryser, Peter
    HIGH-PERFORMANCE CERAMICS IV, PTS 1-3, 2007, 336-338 : 1849 - +
  • [6] INTEGRATION OF OPTOELECTRONIC COMPONENTS WITH LTCC (LOW TEMPERATURE CO-FIRED CERAMIC) MICROFLUIDIC STRUCTURE
    Malecha, Karol
    METROLOGY AND MEASUREMENT SYSTEMS, 2011, 18 (04) : 713 - 721
  • [7] Development of Low Temperature Co-fired Ceramic (LTCC) Coatings for Electrical Conductor Wires
    Wang, Zijing
    Freer, Robert
    Fang, Le
    Cotton, Ian
    IEEE TRANSACTIONS ON DIELECTRICS AND ELECTRICAL INSULATION, 2016, 23 (01) : 158 - 164
  • [8] Towards rational design of low-temperature co-fired ceramic (LTCC) materials
    Zhou, Ji
    JOURNAL OF ADVANCED CERAMICS, 2012, 1 (02) : 89 - 99
  • [9] Development of advanced low temperature co-fired ceramics (LTCC)
    Rabe, T
    Gemeinert, M
    Schiller, WA
    EURO CERAMICS VIII, PTS 1-3, 2004, 264-268 : 1181 - 1184
  • [10] Design and preparation of a novel degradable low-temperature co-fired ceramic (LTCC) composites
    Sun, Zhen
    Li, Wen
    Liu, Yunlong
    Zhang, Haiwen
    Zhu, Degui
    Sun, Hongliang
    Hu, Chunfeng
    Chen, Song
    CERAMICS INTERNATIONAL, 2019, 45 (06) : 7001 - 7010