Impedance-Based Single-Cell Pipetting

被引:3
|
作者
Bonzon, David [1 ,2 ,3 ]
Muller, Georges [2 ,3 ,4 ]
Bureau, Jean-Baptiste [4 ]
Uffer, Nicolas [2 ,4 ]
Beuchat, Nicolas [1 ]
Barrandon, Yann [4 ,5 ,6 ]
Renaud, Philippe [1 ]
机构
[1] Ecole Polytech Fed Lausanne, Lab Microsyst 4, IMT, STI, Lausanne, VD, Switzerland
[2] SEED Biosci SA, Epalinges, Switzerland
[3] SEED Biosci SA, Renens, Switzerland
[4] Ecole Polytech Fed Lausanne, Lab Stem Cell Dynam, IBI, Lausanne, VD, Switzerland
[5] ASTAR, Inst Med Biol, Duke NUS Grad Med Sch, Singapore, Singapore
[6] Singapore Gen Hosp, Dept Plast Reconstruct & Aesthet Surg, Singapore, Singapore
来源
SLAS TECHNOLOGY | 2020年 / 25卷 / 03期
基金
瑞士国家科学基金会;
关键词
single cell; dispensing; disposable pipet tip; impedance spectroscopy; EXPRESSION; STRATEGY;
D O I
10.1177/2472630320911636
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Many biological methods are based on single-cell isolation. In single-cell line development, the gold standard involves the dilution of cells by means of a pipet. This process is time-consuming as it is repeated over several weeks to ensure clonality. Here, we report the modeling, designing, and testing of a disposable pipet tip integrating a cell sensor based on the Coulter principle. We investigate, test, and discuss the effects of design parameters on the sensor performances with an analytical model. We also describe a system that enables the dispensing of single cells using an instrumented pipet coupled with the sensing tip. Most importantly, this system allows the recording of an impedance trace to be used as proof of single-cell isolation. We assess the performances of the system with beads and cells. Finally, we show that the electrical detection has no effect on cell viability.
引用
收藏
页码:222 / 233
页数:12
相关论文
共 50 条
  • [1] Traceable impedance-based single-cell pipetting, from a research set-up to a robust and fast automated robot: DispenCell-S1
    Hannart, Heloise
    Berger, Audrey
    Aeberli, Luc
    Forchelet, David
    Uffer, Nicolas
    Muller, Georges
    Barrandon, Yann
    Renaud, Philippe
    Bonzon, David
    SLAS TECHNOLOGY, 2022, 27 (02): : 121 - 129
  • [2] Dynamic monitoring of single cell lysis in an impedance-based microfluidic device
    Zhou, Ying
    Basu, Srinjan
    Laue, Ernest D.
    Seshia, Ashwin A.
    BIOMEDICAL MICRODEVICES, 2016, 18 (04)
  • [3] Dynamic monitoring of single cell lysis in an impedance-based microfluidic device
    Ying Zhou
    Srinjan Basu
    Ernest D. Laue
    Ashwin A. Seshia
    Biomedical Microdevices, 2016, 18
  • [4] Prototype for single-cell impedance spectroscopy
    Willdoner, C.
    Haselgruebler, T.
    Sonnleitner, A.
    Jakoby, B.
    Hilber, W.
    EUROSENSORS 2015, 2015, 120 : 31 - 35
  • [5] Impedance-based cell monitoring: Barrier properties and beyond
    Benson K.
    Cramer S.
    Galla H.-J.
    Fluids and Barriers of the CNS, 10 (1)
  • [6] Single-Cell Electric Impedance Sensor Based on Integrated Circuit Chip
    Hui, Wenhao
    Shen, Ren
    Mak, Pui-In
    Martins, Rui P.
    Lei, Ka-Meng
    Jia, Yanwei
    2024 IEEE BIOSENSORS CONFERENCE, BIOSENSORS 2024, 2024,
  • [7] Application of Microfluidic Impedance Cytometer in Single-Cell Detection
    Feng, Di
    Wang, Guanghua
    Tang, Wenlai
    Yang, Jiquan
    PROGRESS IN CHEMISTRY, 2021, 33 (04) : 555 - 567
  • [8] Impedance-based cell density measurement with inkjet printed flexible sensor
    Vora, Kunj Himanshu
    Sharov, Vladyslav
    Kordas, Norbert
    Seidl, Karsten
    2022 IEEE INTERNATIONAL CONFERENCE ON FLEXIBLE AND PRINTABLE SENSORS AND SYSTEMS (IEEE FLEPS 2022), 2022,
  • [9] Impedance-based sensor for potassium ions
    Day, C.
    Sopstad, S.
    Ma, H.
    Jiang, C.
    Nathan, A.
    Elliott, S. R.
    Frankl, F. E. Karet
    Hutter, T.
    ANALYTICA CHIMICA ACTA, 2018, 1034 : 39 - 45
  • [10] Feasibility of Tracking Multiple Single-Cell Properties with Impedance Spectroscopy
    Ren, Dingkun
    Chui, Chi On
    ACS SENSORS, 2018, 3 (05): : 1005 - 1015