共 50 条
Attention-guided deep learning for gestational age prediction using fetal brain MRI
被引:20
|作者:
Shen, Liyue
[1
]
Zheng, Jimmy
[2
]
Lee, Edward H.
[1
]
Shpanskaya, Katie
[3
]
McKenna, Emily S.
[3
]
Atluri, Mahesh G.
[4
]
Plasto, Dinko
[4
]
Mitchell, Courtney
[4
]
Lai, Lillian M.
[5
]
Guimaraes, Carolina, V
[3
]
Dahmoush, Hisham
[3
]
Chueh, Jane
[6
]
Halabi, Safwan S.
[3
]
Pauly, John M.
[1
]
Xing, Lei
[7
]
Lu, Quin
[8
]
Oztekin, Ozgur
[9
]
Kline-Fath, Beth M.
[10
]
Yeom, Kristen W.
[3
]
机构:
[1] Stanford Univ, Dept Elect Engn, Stanford, CA 94305 USA
[2] Stanford Univ, Sch Med, Stanford, CA 94305 USA
[3] Stanford Univ, Dept Radiol, Sch Med, Lucile Packard Childrens Hosp, Stanford, CA 94305 USA
[4] St Josephs Hosp, Dept Radiol, Phoenix, AZ USA
[5] Childrens Hosp Los Angeles, Dept Radiol, Los Angeles, CA 90027 USA
[6] Stanford Univ, Sch Med, Dept Obstet & Gynecol, Lucile Packard Childrens Hosp, Stanford, CA USA
[7] Stanford Univ, Dept Radiat Oncol, Sch Med, Stanford, CA 94305 USA
[8] Philips Healthcare North Amer, Gainesville, FL USA
[9] Baku Gay Univ, Educ & Res Hosp, Dept Neuroradiol, Izmir, Turkey
[10] Univ Cincinnati, Coll Med, Dept Radiol, Cincinnati Childrens Hosp Med Ctr, Cincinnati, OH USA
关键词:
SPATIOTEMPORAL ATLAS;
FOLDING PATTERNS;
CEREBRAL-CORTEX;
IN-UTERO;
GROWTH;
SHAPE;
D O I:
10.1038/s41598-022-05468-5
中图分类号:
O [数理科学和化学];
P [天文学、地球科学];
Q [生物科学];
N [自然科学总论];
学科分类号:
07 ;
0710 ;
09 ;
摘要:
Magnetic resonance imaging offers unrivaled visualization of the fetal brain, forming the basis for establishing age-specific morphologic milestones. However, gauging age-appropriate neural development remains a difficult task due to the constantly changing appearance of the fetal brain, variable image quality, and frequent motion artifacts. Here we present an end-to-end, attention-guided deep learning model that predicts gestational age with R-2 score of 0.945, mean absolute error of 6.7 days, and concordance correlation coefficient of 0.970. The convolutional neural network was trained on a heterogeneous dataset of 741 developmentally normal fetal brain images ranging from 19 to 39 weeks in gestational age. We also demonstrate model performance and generalizability using independent datasets from four academic institutions across the U.S. and Turkey with R-2 scores of 0.81-0.90 after minimal fine-tuning. The proposed regression algorithm provides an automated machine-enabled tool with the potential to better characterize in utero neurodevelopment and guide real-time gestational age estimation after the first trimester.
引用
收藏
页数:10
相关论文