Attention-guided deep learning for gestational age prediction using fetal brain MRI

被引:20
|
作者
Shen, Liyue [1 ]
Zheng, Jimmy [2 ]
Lee, Edward H. [1 ]
Shpanskaya, Katie [3 ]
McKenna, Emily S. [3 ]
Atluri, Mahesh G. [4 ]
Plasto, Dinko [4 ]
Mitchell, Courtney [4 ]
Lai, Lillian M. [5 ]
Guimaraes, Carolina, V [3 ]
Dahmoush, Hisham [3 ]
Chueh, Jane [6 ]
Halabi, Safwan S. [3 ]
Pauly, John M. [1 ]
Xing, Lei [7 ]
Lu, Quin [8 ]
Oztekin, Ozgur [9 ]
Kline-Fath, Beth M. [10 ]
Yeom, Kristen W. [3 ]
机构
[1] Stanford Univ, Dept Elect Engn, Stanford, CA 94305 USA
[2] Stanford Univ, Sch Med, Stanford, CA 94305 USA
[3] Stanford Univ, Dept Radiol, Sch Med, Lucile Packard Childrens Hosp, Stanford, CA 94305 USA
[4] St Josephs Hosp, Dept Radiol, Phoenix, AZ USA
[5] Childrens Hosp Los Angeles, Dept Radiol, Los Angeles, CA 90027 USA
[6] Stanford Univ, Sch Med, Dept Obstet & Gynecol, Lucile Packard Childrens Hosp, Stanford, CA USA
[7] Stanford Univ, Dept Radiat Oncol, Sch Med, Stanford, CA 94305 USA
[8] Philips Healthcare North Amer, Gainesville, FL USA
[9] Baku Gay Univ, Educ & Res Hosp, Dept Neuroradiol, Izmir, Turkey
[10] Univ Cincinnati, Coll Med, Dept Radiol, Cincinnati Childrens Hosp Med Ctr, Cincinnati, OH USA
关键词
SPATIOTEMPORAL ATLAS; FOLDING PATTERNS; CEREBRAL-CORTEX; IN-UTERO; GROWTH; SHAPE;
D O I
10.1038/s41598-022-05468-5
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Magnetic resonance imaging offers unrivaled visualization of the fetal brain, forming the basis for establishing age-specific morphologic milestones. However, gauging age-appropriate neural development remains a difficult task due to the constantly changing appearance of the fetal brain, variable image quality, and frequent motion artifacts. Here we present an end-to-end, attention-guided deep learning model that predicts gestational age with R-2 score of 0.945, mean absolute error of 6.7 days, and concordance correlation coefficient of 0.970. The convolutional neural network was trained on a heterogeneous dataset of 741 developmentally normal fetal brain images ranging from 19 to 39 weeks in gestational age. We also demonstrate model performance and generalizability using independent datasets from four academic institutions across the U.S. and Turkey with R-2 scores of 0.81-0.90 after minimal fine-tuning. The proposed regression algorithm provides an automated machine-enabled tool with the potential to better characterize in utero neurodevelopment and guide real-time gestational age estimation after the first trimester.
引用
收藏
页数:10
相关论文
共 50 条
  • [41] Automatic cortical surface parcellation in the fetal brain using attention-gated spherical U-net
    You, Sungmin
    Barba, Anette De Leon
    Tamayo, Valeria Cruz
    Yun, Hyuk Jin
    Yang, Edward
    Grant, P. Ellen
    Im, Kiho
    FRONTIERS IN NEUROSCIENCE, 2024, 18
  • [42] Fast and Accurate Amyloid Brain PET Quantification Without MRI Using Deep Neural Networks
    Kang, Seung Kwan
    Kim, Daewoon
    Shin, Seong A.
    Kim, Yu Kyeong
    Choi, Hongyoon
    Lee, Jae Sung
    JOURNAL OF NUCLEAR MEDICINE, 2023, 64 (04) : 659 - 666
  • [43] Using the Gibbs Function as a Measure of Human Brain Development Trends from Fetal Stage to Advanced Age
    Rietman, Edward A.
    Taylor, Sophie
    Siegelmann, Hava T.
    Deriu, Marco A.
    Cavaglia, Marco
    Tuszynski, Jack A.
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2020, 21 (03)
  • [44] A spatio-temporal latent atlas for semi-supervised learning of fetal brain segmentations and morphological age estimation
    Dittrich, Eva
    Raviv, Tammy Riklin
    Kasprian, Gregor
    Donner, Rene
    Brugger, Peter C.
    Prayer, Daniela
    Langs, Georg
    MEDICAL IMAGE ANALYSIS, 2014, 18 (01) : 9 - 21
  • [45] Review on secure traditional and machine learning algorithms for age prediction using IRIS image
    Gowroju, Swathi
    Aarti
    Kumar, Sandeep
    MULTIMEDIA TOOLS AND APPLICATIONS, 2022, 81 (24) : 35503 - 35531
  • [46] Fetal biometry and amniotic fluid volume assessment end-to-end automation using Deep Learning
    Slimani, Saad
    Hounka, Salaheddine
    Mahmoudi, Abdelhak
    Rehah, Taha
    Laoudiyi, Dalal
    Saadi, Hanane
    Bouziyane, Amal
    Lamrissi, Amine
    Jalal, Mohamed
    Bouhya, Said
    Akiki, Mustapha
    Bouyakhf, Youssef
    Badaoui, Bouabid
    Radgui, Amina
    Mhlanga, Musa
    Bouyakhf, El Houssine
    NATURE COMMUNICATIONS, 2023, 14 (01)
  • [47] A Novel Shape Based Plant Growth Prediction Algorithm Using Deep Learning and Spatial Transformation
    Kim, Taehyeon
    Lee, Sang-Ho
    Kim, Jong-Ok
    IEEE ACCESS, 2022, 10 : 37731 - 37742
  • [48] Implementation of a Clinical Prediction Model Using Daily Postnatal Weight Gain, Birth Weight, and Gestational Age to Risk Stratify ROP
    McCauley, Kortany
    Chundu, Anupama
    Song, Helen
    High, Robin
    Suh, Donny
    JOURNAL OF PEDIATRIC OPHTHALMOLOGY & STRABISMUS, 2018, 55 (05) : 326 - 334
  • [49] Brain age prediction using interpretable multi-feature-based convolutional neural network in mild traumatic brain injury
    Zhang, Xiang
    Pan, Yizhen
    Wu, Tingting
    Zhao, Wenpu
    Zhang, Haonan
    Ding, Jierui
    Ji, Qiuyu
    Jia, Xiaoyan
    Li, Xuan
    Lee, Zhiqi
    Zhang, Jie
    Bai, Lijun
    NEUROIMAGE, 2024, 297
  • [50] Predicting Hypoperfusion Lesion and Target Mismatch in Stroke from Diffusion-weighted MRI Using Deep Learning
    Yu, Yannan
    Christensen, Soren
    Ouyang, Jiahong
    Scalzo, Fabien
    Liebeskind, David S.
    Lansberg, Maarten G.
    Albers, Gregory W.
    Zaharchuk, Greg
    RADIOLOGY, 2023, 307 (01)