Attention-guided deep learning for gestational age prediction using fetal brain MRI

被引:20
|
作者
Shen, Liyue [1 ]
Zheng, Jimmy [2 ]
Lee, Edward H. [1 ]
Shpanskaya, Katie [3 ]
McKenna, Emily S. [3 ]
Atluri, Mahesh G. [4 ]
Plasto, Dinko [4 ]
Mitchell, Courtney [4 ]
Lai, Lillian M. [5 ]
Guimaraes, Carolina, V [3 ]
Dahmoush, Hisham [3 ]
Chueh, Jane [6 ]
Halabi, Safwan S. [3 ]
Pauly, John M. [1 ]
Xing, Lei [7 ]
Lu, Quin [8 ]
Oztekin, Ozgur [9 ]
Kline-Fath, Beth M. [10 ]
Yeom, Kristen W. [3 ]
机构
[1] Stanford Univ, Dept Elect Engn, Stanford, CA 94305 USA
[2] Stanford Univ, Sch Med, Stanford, CA 94305 USA
[3] Stanford Univ, Dept Radiol, Sch Med, Lucile Packard Childrens Hosp, Stanford, CA 94305 USA
[4] St Josephs Hosp, Dept Radiol, Phoenix, AZ USA
[5] Childrens Hosp Los Angeles, Dept Radiol, Los Angeles, CA 90027 USA
[6] Stanford Univ, Sch Med, Dept Obstet & Gynecol, Lucile Packard Childrens Hosp, Stanford, CA USA
[7] Stanford Univ, Dept Radiat Oncol, Sch Med, Stanford, CA 94305 USA
[8] Philips Healthcare North Amer, Gainesville, FL USA
[9] Baku Gay Univ, Educ & Res Hosp, Dept Neuroradiol, Izmir, Turkey
[10] Univ Cincinnati, Coll Med, Dept Radiol, Cincinnati Childrens Hosp Med Ctr, Cincinnati, OH USA
关键词
SPATIOTEMPORAL ATLAS; FOLDING PATTERNS; CEREBRAL-CORTEX; IN-UTERO; GROWTH; SHAPE;
D O I
10.1038/s41598-022-05468-5
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Magnetic resonance imaging offers unrivaled visualization of the fetal brain, forming the basis for establishing age-specific morphologic milestones. However, gauging age-appropriate neural development remains a difficult task due to the constantly changing appearance of the fetal brain, variable image quality, and frequent motion artifacts. Here we present an end-to-end, attention-guided deep learning model that predicts gestational age with R-2 score of 0.945, mean absolute error of 6.7 days, and concordance correlation coefficient of 0.970. The convolutional neural network was trained on a heterogeneous dataset of 741 developmentally normal fetal brain images ranging from 19 to 39 weeks in gestational age. We also demonstrate model performance and generalizability using independent datasets from four academic institutions across the U.S. and Turkey with R-2 scores of 0.81-0.90 after minimal fine-tuning. The proposed regression algorithm provides an automated machine-enabled tool with the potential to better characterize in utero neurodevelopment and guide real-time gestational age estimation after the first trimester.
引用
收藏
页数:10
相关论文
共 50 条
  • [31] Prediction of angiogenesis in extrahepatic cholangiocarcinoma using MRI-based machine learning
    Liu, Jiong
    Liu, Mali
    Gong, Yaolin
    Su, Song
    Li, Man
    Shu, Jian
    FRONTIERS IN ONCOLOGY, 2023, 13
  • [32] A Deep Learning-Based Indoor Positioning Approach Using Channel and Spatial Attention
    Zhang, Jiawei
    Xu, Zhendong
    Zhang, Shiyu
    Hu, Keke
    Shen, Yuan
    IEEE COMMUNICATIONS LETTERS, 2025, 29 (02) : 373 - 377
  • [33] Clinical Validation of the INTERGROWTH-21st Standards of Fetal Abdominal Circumference for the Prediction of Small-for-Gestational-Age Neonates in Italy
    Bellussi, Federica
    Cataneo, Ilaria
    Visentin, Silvia
    Simonazzi, Giuliana
    Lenzi, Jacopo
    Fantini, Maria Pia
    Mimmi, Stefano
    Cosmi, Erich
    Pilu, Gianluigi
    FETAL DIAGNOSIS AND THERAPY, 2017, 42 (03) : 198 - 203
  • [34] Automated Segmentation of Fetal Intracranial Volume in Three-Dimensional Ultrasound Using Deep Learning: Identifying Sex Differences in Prenatal Brain Development
    de Zwarte, Sonja M. C.
    Teeuw, Jalmar
    He, Jiaojiao
    Bekker, Mireille N.
    van Sloun, Ruud J. G.
    Pol, Hilleke E. Hulshoff
    HUMAN BRAIN MAPPING, 2024, 45 (17)
  • [35] Deep learning reconstruction of diffusion-weighted brain MRI for evaluation of patients with acute neurologic symptoms
    Park, Sang Ik
    Yim, Younghee
    Lee, Jung Bin
    Ahn, Hye Shin
    SCIENTIFIC REPORTS, 2024, 14 (01):
  • [36] An analytical cross-sectional study: determining gestational age using fetal clavicle length during the second trimester
    Avci, Fazil
    Serin, Salih
    Bakacak, Murat
    Ercan, Onder
    Kostu, Bulent
    Arikan, Deniz Cemgil
    Kulhan, Mehmet
    Bilgi, Ahmet
    Celik, Cetin
    Duymus, Ayse Ceren
    Kulhan, Nur Gozde
    ARCHIVES OF GYNECOLOGY AND OBSTETRICS, 2023, 309 (6) : 2663 - 2668
  • [37] Multi-Site Assessment of Pediatric Bone Age Using Deep Learning
    Valliani, Aly A.
    Schwartz, John T.
    Arvind, Varun
    Taree, Amir
    Kim, Jun S.
    Cho, Samuel K.
    ACM-BCB 2020 - 11TH ACM CONFERENCE ON BIOINFORMATICS, COMPUTATIONAL BIOLOGY, AND HEALTH INFORMATICS, 2020,
  • [38] Deep Learning-Based Prediction of Hematoma Expansion Using a Single Brain Computed Tomographic Slice in Patients With Spontaneous Intracerebral Hemorrhages
    Tang, Zhiri
    Zhu, Yiqin
    Lu, Xin
    Wu, Dengjun
    Fan, Xinlin
    Shen, Junjun
    Xiao, Limin
    WORLD NEUROSURGERY, 2022, 165 : E128 - E136
  • [39] Fully Automated MRI Segmentation and Volumetric Measurement of Intracranial Meningioma Using Deep Learning
    Kang, Ho
    Witanto, Joseph Nathanael
    Pratama, Kevin
    Lee, Doohee
    Choi, Kyu Sung
    Choi, Seung Hong
    Kim, Kyung-Min
    Kim, Min-Sung
    Kim, Jin Wook
    Kim, Yong Hwy
    Park, Sang Joon
    Park, Chul-Kee
    JOURNAL OF MAGNETIC RESONANCE IMAGING, 2023, 57 (03) : 871 - 881
  • [40] First-trimester and combined first- and second-trimester prediction of small-for-gestational age and late fetal growth restriction
    Sotiriadis, A.
    Figueras, F.
    Eleftheriades, M.
    Papaioannou, G. K.
    Chorozoglou, G.
    Dinas, K.
    Papantoniou, N.
    ULTRASOUND IN OBSTETRICS & GYNECOLOGY, 2019, 53 (01) : 55 - 61