Attention-guided deep learning for gestational age prediction using fetal brain MRI

被引:20
|
作者
Shen, Liyue [1 ]
Zheng, Jimmy [2 ]
Lee, Edward H. [1 ]
Shpanskaya, Katie [3 ]
McKenna, Emily S. [3 ]
Atluri, Mahesh G. [4 ]
Plasto, Dinko [4 ]
Mitchell, Courtney [4 ]
Lai, Lillian M. [5 ]
Guimaraes, Carolina, V [3 ]
Dahmoush, Hisham [3 ]
Chueh, Jane [6 ]
Halabi, Safwan S. [3 ]
Pauly, John M. [1 ]
Xing, Lei [7 ]
Lu, Quin [8 ]
Oztekin, Ozgur [9 ]
Kline-Fath, Beth M. [10 ]
Yeom, Kristen W. [3 ]
机构
[1] Stanford Univ, Dept Elect Engn, Stanford, CA 94305 USA
[2] Stanford Univ, Sch Med, Stanford, CA 94305 USA
[3] Stanford Univ, Dept Radiol, Sch Med, Lucile Packard Childrens Hosp, Stanford, CA 94305 USA
[4] St Josephs Hosp, Dept Radiol, Phoenix, AZ USA
[5] Childrens Hosp Los Angeles, Dept Radiol, Los Angeles, CA 90027 USA
[6] Stanford Univ, Sch Med, Dept Obstet & Gynecol, Lucile Packard Childrens Hosp, Stanford, CA USA
[7] Stanford Univ, Dept Radiat Oncol, Sch Med, Stanford, CA 94305 USA
[8] Philips Healthcare North Amer, Gainesville, FL USA
[9] Baku Gay Univ, Educ & Res Hosp, Dept Neuroradiol, Izmir, Turkey
[10] Univ Cincinnati, Coll Med, Dept Radiol, Cincinnati Childrens Hosp Med Ctr, Cincinnati, OH USA
关键词
SPATIOTEMPORAL ATLAS; FOLDING PATTERNS; CEREBRAL-CORTEX; IN-UTERO; GROWTH; SHAPE;
D O I
10.1038/s41598-022-05468-5
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Magnetic resonance imaging offers unrivaled visualization of the fetal brain, forming the basis for establishing age-specific morphologic milestones. However, gauging age-appropriate neural development remains a difficult task due to the constantly changing appearance of the fetal brain, variable image quality, and frequent motion artifacts. Here we present an end-to-end, attention-guided deep learning model that predicts gestational age with R-2 score of 0.945, mean absolute error of 6.7 days, and concordance correlation coefficient of 0.970. The convolutional neural network was trained on a heterogeneous dataset of 741 developmentally normal fetal brain images ranging from 19 to 39 weeks in gestational age. We also demonstrate model performance and generalizability using independent datasets from four academic institutions across the U.S. and Turkey with R-2 scores of 0.81-0.90 after minimal fine-tuning. The proposed regression algorithm provides an automated machine-enabled tool with the potential to better characterize in utero neurodevelopment and guide real-time gestational age estimation after the first trimester.
引用
收藏
页数:10
相关论文
共 50 条
  • [21] Deep learning-based parameter estimation in fetal diffusion-weighted MRI
    Karimi, Davood
    Jaimes, Camilo
    Machado-Rivas, Fedel
    Vasung, Lana
    Khan, Shadab
    Warfield, Simon K.
    Gholipour, Ali
    NEUROIMAGE, 2021, 243
  • [22] Deep Learning-Based Multiclass Brain Tissue Segmentation in Fetal MRIs
    Huang, Xiaona
    Liu, Yang
    Li, Yuhan
    Qi, Keying
    Gao, Ang
    Zheng, Bowen
    Liang, Dong
    Long, Xiaojing
    SENSORS, 2023, 23 (02)
  • [23] Springback prediction using point series and deep learning
    Bingqian, Yang
    Zeng, Yuanyi
    Yang, Hai
    Oscoz, Mariluz Penalva
    Ortiz, Mikel
    Coenen, Frans
    Nguyen, Anh
    INTERNATIONAL JOURNAL OF ADVANCED MANUFACTURING TECHNOLOGY, 2024, 132 (9-10) : 4723 - 4735
  • [24] Fetal brain development at 25-39 weeks gestational age: A preliminary study using intravoxel incoherent motion diffusion-weighted imaging
    Yuan, Xiao
    Yue, Cui
    Yu, Mei
    Chen, Ping
    Du, Pang
    Shao, Chang-Hua
    Cheng, Si-Chao
    Bian, Ren-Jie
    Wang, Shao-Yu
    Wang, Wen
    Cui, Guang-Bin
    JOURNAL OF MAGNETIC RESONANCE IMAGING, 2019, 50 (03) : 899 - 909
  • [25] An approach for automatic detection of fetal gestational age at the third trimester using kidney length and biparietal diameter
    Meenakshi, S.
    Suganthi, M.
    Kumar, P. Suresh
    SOFT COMPUTING, 2019, 23 (08) : 2839 - 2848
  • [26] Longitudinal brain tumor segmentation prediction in MRI using feature and label fusion
    Pei, Linmin
    Bakas, Spyridon
    Vossough, Arastoo
    Reza, Syed M. S.
    Davatzikos, Christos
    Iftekharuddin, Khan M.
    BIOMEDICAL SIGNAL PROCESSING AND CONTROL, 2020, 55
  • [27] Prediction of postnatal outcomes in congenital diaphragmatic hernia using MRI signal intensity of the fetal lung
    Terui, K.
    Omoto, A.
    Osada, H.
    Hishiki, T.
    Saito, T.
    Sato, Y.
    Nakata, M.
    Komatsu, S.
    Ono, S.
    Yoshida, H.
    JOURNAL OF PERINATOLOGY, 2011, 31 (04) : 269 - 273
  • [28] Measurements using 7.0 T post-mortem magnetic resonance imaging of the scalar dimensions of the fetal brain between 12 and 20 weeks gestational age
    Lin, Xiangtao
    Zhang, Zhonghe
    Teng, Gaojun
    Meng, Haiwei
    Yu, Taifei
    Hou, Zhongyu
    Fang, Fang
    Zang, Fengchao
    Liu, Shuwei
    INTERNATIONAL JOURNAL OF DEVELOPMENTAL NEUROSCIENCE, 2011, 29 (08) : 885 - 889
  • [29] Prediction of small for gestational age neonates: screening by maternal factors, fetal biometry, and biomarkers at 35-37 weeks' gestation
    Ciobanu, Anca
    Rouvali, Angeliki
    Syngelaki, Argyro
    Akolekar, Ranjit
    Nicolaides, Kypros H.
    AMERICAN JOURNAL OF OBSTETRICS AND GYNECOLOGY, 2019, 220 (05) : 486.e1 - 486.e11
  • [30] Fetal Gestational Age Estimation Using Ultrasonic Transverse Cerebellar Diameter in a Sub-Saharan African Population
    Adelabu, Akeem Olajide
    Bello, Temitope Olugbenga
    Idowu, Bukunmi Michael
    Oyedepo, Victor Olufemi
    JOURNAL OF MEDICAL ULTRASOUND, 2024, 32 (01) : 41 - 47