Attention-guided deep learning for gestational age prediction using fetal brain MRI

被引:20
|
作者
Shen, Liyue [1 ]
Zheng, Jimmy [2 ]
Lee, Edward H. [1 ]
Shpanskaya, Katie [3 ]
McKenna, Emily S. [3 ]
Atluri, Mahesh G. [4 ]
Plasto, Dinko [4 ]
Mitchell, Courtney [4 ]
Lai, Lillian M. [5 ]
Guimaraes, Carolina, V [3 ]
Dahmoush, Hisham [3 ]
Chueh, Jane [6 ]
Halabi, Safwan S. [3 ]
Pauly, John M. [1 ]
Xing, Lei [7 ]
Lu, Quin [8 ]
Oztekin, Ozgur [9 ]
Kline-Fath, Beth M. [10 ]
Yeom, Kristen W. [3 ]
机构
[1] Stanford Univ, Dept Elect Engn, Stanford, CA 94305 USA
[2] Stanford Univ, Sch Med, Stanford, CA 94305 USA
[3] Stanford Univ, Dept Radiol, Sch Med, Lucile Packard Childrens Hosp, Stanford, CA 94305 USA
[4] St Josephs Hosp, Dept Radiol, Phoenix, AZ USA
[5] Childrens Hosp Los Angeles, Dept Radiol, Los Angeles, CA 90027 USA
[6] Stanford Univ, Sch Med, Dept Obstet & Gynecol, Lucile Packard Childrens Hosp, Stanford, CA USA
[7] Stanford Univ, Dept Radiat Oncol, Sch Med, Stanford, CA 94305 USA
[8] Philips Healthcare North Amer, Gainesville, FL USA
[9] Baku Gay Univ, Educ & Res Hosp, Dept Neuroradiol, Izmir, Turkey
[10] Univ Cincinnati, Coll Med, Dept Radiol, Cincinnati Childrens Hosp Med Ctr, Cincinnati, OH USA
关键词
SPATIOTEMPORAL ATLAS; FOLDING PATTERNS; CEREBRAL-CORTEX; IN-UTERO; GROWTH; SHAPE;
D O I
10.1038/s41598-022-05468-5
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Magnetic resonance imaging offers unrivaled visualization of the fetal brain, forming the basis for establishing age-specific morphologic milestones. However, gauging age-appropriate neural development remains a difficult task due to the constantly changing appearance of the fetal brain, variable image quality, and frequent motion artifacts. Here we present an end-to-end, attention-guided deep learning model that predicts gestational age with R-2 score of 0.945, mean absolute error of 6.7 days, and concordance correlation coefficient of 0.970. The convolutional neural network was trained on a heterogeneous dataset of 741 developmentally normal fetal brain images ranging from 19 to 39 weeks in gestational age. We also demonstrate model performance and generalizability using independent datasets from four academic institutions across the U.S. and Turkey with R-2 scores of 0.81-0.90 after minimal fine-tuning. The proposed regression algorithm provides an automated machine-enabled tool with the potential to better characterize in utero neurodevelopment and guide real-time gestational age estimation after the first trimester.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] PDFF-CNN: An attention-guided dynamic multi-orientation feature fusion method for gestational age prediction on imbalanced fetal brain MRI dataset
    Feng, Ziteng
    Zhou, Ran
    Xia, Wei
    Wang, Siru
    Liu, Yang
    Huang, Zhongwei
    Gan, Haitao
    MEDICAL PHYSICS, 2024, 51 (05) : 3480 - 3494
  • [2] Learning-based prediction of gestational age from ultrasound images of the fetal brain
    Namburete, Ana I. L.
    Stebbing, Richard V.
    Kemp, Bryn
    Yaqub, Mohammad
    Papageorghiou, Aris T.
    Noble, J. Alison
    MEDICAL IMAGE ANALYSIS, 2015, 21 (01) : 72 - 86
  • [3] Attention-guided deep neural network with a multichannel architecture for lung nodule classification
    Zheng, Rong
    Wen, Hongqiao
    Zhu, Feng
    Lan, Weishun
    HELIYON, 2024, 10 (01)
  • [4] Explainable Deep Learning for Personalized Age Prediction With Brain Morphology
    Lombardi, Angela
    Diacono, Domenico
    Amoroso, Nicola
    Monaco, Alfonso
    Tavares, Joao Manuel R. S.
    Bellotti, Roberto
    Tangaro, Sabina
    FRONTIERS IN NEUROSCIENCE, 2021, 15
  • [5] A Multi-Orientation Feature Fusion CNN for Gestational Age Prediction from Fetal MRI Images
    Feng, Ziteng
    Wang, Siru
    Xia, Wei
    Gan, Haitao
    Zhou, Ran
    2023 35TH CHINESE CONTROL AND DECISION CONFERENCE, CCDC, 2023, : 5431 - 5436
  • [6] Ensemble Transfer Learning for Fetal Head Analysis: From Segmentation to Gestational Age and Weight Prediction
    Alzubaidi, Mahmood
    Agus, Marco
    Shah, Uzair
    Makhlouf, Michel
    Alyafei, Khalid
    Househ, Mowafa
    DIAGNOSTICS, 2022, 12 (09)
  • [7] Fetal Gestational Age Prediction in Brain Magnetic Resonance Imaging Using Artificial Intelligence: A Comparative Study of Three Biometric Techniques
    Vahedifard, Farzan
    Liu, Xuchu
    Marathu, Kranthi K.
    Ai, H. Asher
    Supanich, Mark P.
    Kocak, Mehmet
    Adler, Seth
    Ansari, Shehbaz M.
    Akyuz, Melih
    Adepoju, Jubril O.
    Byrd, Sharon
    REPRODUCTIVE MEDICINE, 2024, 5 (03): : 113 - 135
  • [8] Assessment of MRI-Based Automated Fetal Cerebral Cortical Folding Measures in Prediction of Gestational Age in the Third Trimester
    Wu, J.
    Awate, S. P.
    Licht, D. J.
    Clouchoux, C.
    du Plessis, A. J.
    Avants, B. B.
    Vossough, A.
    Gee, J. C.
    Limperopoulos, C.
    AMERICAN JOURNAL OF NEURORADIOLOGY, 2015, 36 (07) : 1369 - 1374
  • [9] RefinePocket: An Attention-Enhanced and Mask-Guided Deep Learning Approach for Protein Binding Site Prediction
    Liu, Yongchang
    Li, Peiying
    Tu, Shikui
    Xu, Lei
    IEEE-ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, 2023, 20 (05) : 3314 - 3321
  • [10] Development of fetal brain of 20 weeks gestational age: Assessment with post-mortem Magnetic Resonance Imaging
    Zhang, Zhonghe
    Liu, Shuwei
    Lin, Xiangtao
    Teng, Gaojun
    Yu, Taifei
    Fang, Fang
    Zang, Fengchao
    EUROPEAN JOURNAL OF RADIOLOGY, 2011, 80 (03) : E432 - E439