Quantum vibration perturbation approach with polyatomic probe in simulating infrared spectra

被引:3
作者
Cong, Yang [1 ]
Zhai, Yu [1 ]
Yang, Jitai [1 ]
Grofe, Adam [1 ]
Gao, Jiali [2 ,3 ,4 ]
Li, Hui [1 ]
机构
[1] Jilin Univ, Inst Theoret Chem, Coll Chem, 2519 Jiefang Rd, Changchun 130023, Peoples R China
[2] Univ Minnesota, Dept Chem, 207 Pleasant St,SE, Minneapolis, MN 55455 USA
[3] Univ Minnesota, Supercomputing Inst, 207 Pleasant St,SE, Minneapolis, MN 55455 USA
[4] Shenzhen Bay Lab, Inst Syst & Phys Biol, Shenzhen 518055, Peoples R China
基金
中国国家自然科学基金;
关键词
GENERAL FORCE-FIELD; RELATE; 2; SETS; FORMIC-ACID; SEMIEMPIRICAL METHODS; NDDO APPROXIMATIONS; ENERGY RELAXATION; ELECTRIC-FIELDS; LINE-SHAPES; ACTIVE-SITE; DILUTE HOD;
D O I
10.1039/d1cp04490g
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The quantitative prediction of vibrational spectra of chromophore molecules in solution is challenging and numerous methods have been developed. In this work, we present a quantum vibration perturbation (QVP) approach, which is a procedure that combines molecular quantum vibration and molecular dynamics with perturbation theory. In this framework, an initial Newtonian molecular dynamics simulation is performed, followed by a substitution process to embed molecular quantum vibrational wave functions into the trajectory. The instantaneous vibrational frequency shift at each time step is calculated using the Rayleigh-Schrodinger perturbation theory, where the perturbation operator is the difference in the vibrational potential between the reference chromophore and the perturbed chromophore in the environment. Semi-classical statistical mechanics is employed to obtain the spectral lineshape function. We validated our method using HCOOH center dot nH(2)O (n = 1-2) clusters and HCOOH aqueous solution as examples. The QVP method can be employed for rapid prediction of the vibrational spectrum of a specific mode in solution.
引用
收藏
页码:1174 / 1182
页数:9
相关论文
共 69 条
  • [41] Systematically convergent basis sets for explicitly correlated wavefunctions: The atoms H, He, B-Ne, and Al-Ar
    Peterson, Kirk A.
    Adler, Thomas B.
    Werner, Hans-Joachim
    [J]. JOURNAL OF CHEMICAL PHYSICS, 2008, 128 (08)
  • [42] IR spectrum of the other rotamer of formic acid, cis-HCOOH
    Pettersson, M
    Lundell, J
    Khriachtchev, L
    Rasanen, M
    [J]. JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1997, 119 (48) : 11715 - 11716
  • [43] Rotational spectra and structures of three hydrogen-bonded complexes between formic acid and water
    Priem, D
    Ha, TK
    Bauder, A
    [J]. JOURNAL OF CHEMICAL PHYSICS, 2000, 113 (01) : 169 - 175
  • [44] Structural Dynamics of a Catalytic Monolayer Probed by Ultrafast 2D IR Vibrational Echoes
    Rosenfeld, Daniel E.
    Gengeliczki, Zsolt
    Smith, Brian J.
    Stack, T. D. P.
    Fayer, M. D.
    [J]. SCIENCE, 2011, 334 (6056) : 634 - 639
  • [45] Water Dynamics in Gyroid Phases of Self-Assembled Gemini Surfactants
    Roy, Santanu
    Skoff, David
    Perroni, Dominic V.
    Mondal, Jagannath
    Yethiraj, Arun
    Mahanthappa, Mahesh K.
    Zanni, Martin T.
    Skinner, James L.
    [J]. JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2016, 138 (08) : 2472 - 2475
  • [46] Hydrophobic Collapse in N-Methylacetamide Water Mixtures
    Salamatova, Evgeniia
    Cunha, Ana V.
    Bloem, Robbert
    Roeters, Steven J.
    Woutersen, Sander
    Jansen, Thomas L. C.
    Pshenichnikov, Maxim S.
    [J]. JOURNAL OF PHYSICAL CHEMISTRY A, 2018, 122 (09) : 2468 - 2478
  • [47] Contact Ion Pairs of Phosphate Groups in Water: Two-Dimensional Infrared Spectroscopy of Dimethyl Phosphate and ab Initio Simulations
    Schauss, Jakob
    Kundu, Achintya
    Fingerhut, Benjamin P.
    Elsaesser, Thomas
    [J]. JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2019, 10 (20) : 6281 - 6286
  • [48] Pronounced non-Condon effects in the ultrafast infrared spectroscopy of water
    Schmidt, JR
    Corcelli, SA
    Skinner, JL
    [J]. JOURNAL OF CHEMICAL PHYSICS, 2005, 123 (04)
  • [49] SPACE-TIME CORRELATION FUNCTION FORMALISM FOR SLOW NEUTRON SCATTERING
    SCHOFIELD, P
    [J]. PHYSICAL REVIEW LETTERS, 1960, 4 (05) : 239 - 240
  • [50] Semiclassical theory of vibrational energy relaxation in the condensed phase
    Shi, Q
    Geva, E
    [J]. JOURNAL OF PHYSICAL CHEMISTRY A, 2003, 107 (43) : 9059 - 9069