Brain Tumor Detection Based on Multilevel 2D Histogram Image Segmentation Using DEWO Optimization Algorithm

被引:17
作者
Kumar, Sumit [1 ]
Vig, Garima [2 ]
Varshney, Sapna [3 ]
Bansal, Priti [4 ]
机构
[1] Amity Univ, Dept Comp Sci & Engn, Noida, Uttar Pradesh, India
[2] Amity Univ, Comp Sci Engn Dept, Noida, Uttar Pradesh, India
[3] Univ Delhi, Delhi, India
[4] Netaji Subhas Univ Technol, Delhi, India
关键词
2D Histogram; Between-Class Variance; Brain MR Image Segmentation; Multilevel Thresholding; Whale Optimization; THRESHOLD SELECTION METHOD; DIFFERENTIAL EVOLUTION; MR-IMAGES; ENTROPY;
D O I
10.4018/IJEHMC.2020070105
中图分类号
R-058 [];
学科分类号
摘要
Brain tumor detection from magnetic resonance (MR)images is a tedious task but vital for early prediction of the disease which until now is solely based on the experience of medical practitioners. Multilevel image segmentation is a computationally simple and efficient approach for segmenting brain MR images. Conventional image segmentation does not consider the spatial correlation of image pixels and lacks better post-filtering efficiency. This study presents a Renyi entropy-based multilevel image segmentation approach using a combination of differential evolution and whale optimization algorithms (DEWO) to detect brain tumors. Further, to validate the efficiency of the proposed hybrid algorithm, it is compared with some prominent metaheuristic algorithms in recent past using between-class variance and the Tsallis entropy functions. The proposed hybrid algorithm for image segmentation is able to achieve better results than all the other metaheuristic algorithms in every entropy-based segmentation performed on brain MR images.
引用
收藏
页码:71 / 85
页数:15
相关论文
共 42 条
[1]  
Abdeldaim AM, 2018, STUD COMPUT INTELL, V730, P131, DOI 10.1007/978-3-319-63754-9_7
[2]   Image Analysis for MRI Based Brain Tumor Detection and Feature Extraction Using Biologically Inspired BWT and SVM [J].
Bahadure, Nilesh Bhaskarrao ;
Ray, Arun Kumar ;
Thethi, Har Pal .
International Journal of Biomedical Imaging, 2017, 2017
[3]  
Dawngliana M, 2015, 2015 INTERNATIONAL SYMPOSIUM ON ADVANCED COMPUTING AND COMMUNICATION (ISACC), P219, DOI 10.1109/ISACC.2015.7377345
[4]   Comparison and Evaluation of Methods for Liver Segmentation From CT Datasets [J].
Heimann, Tobias ;
van Ginneken, Bram ;
Styner, Martin A. ;
Arzhaeva, Yulia ;
Aurich, Volker ;
Bauer, Christian ;
Beck, Andreas ;
Becker, Christoph ;
Beichel, Reinhard ;
Bekes, Gyoergy ;
Bello, Fernando ;
Binnig, Gerd ;
Bischof, Horst ;
Bornik, Alexander ;
Cashman, Peter M. M. ;
Chi, Ying ;
Cordova, Andres ;
Dawant, Benoit M. ;
Fidrich, Marta ;
Furst, Jacob D. ;
Furukawa, Daisuke ;
Grenacher, Lars ;
Hornegger, Joachim ;
Kainmueller, Dagmar ;
Kitney, Richard I. ;
Kobatake, Hidefumi ;
Lamecker, Hans ;
Lange, Thomas ;
Lee, Jeongjin ;
Lennon, Brian ;
Li, Rui ;
Li, Senhu ;
Meinzer, Hans-Peter ;
Nemeth, Gabor ;
Raicu, Daniela S. ;
Rau, Anne-Mareike ;
van Rikxoort, Eva M. ;
Rousson, Mikael ;
Rusko, Laszlo ;
Saddi, Kinda A. ;
Schmidt, Guenter ;
Seghers, Dieter ;
Shimizu, Akinobu ;
Slagmolen, Pieter ;
Sorantin, Erich ;
Soza, Grzegorz ;
Susomboon, Ruchaneewan ;
Waite, Jonathan M. ;
Wimmer, Andreas ;
Wolf, Ivo .
IEEE TRANSACTIONS ON MEDICAL IMAGING, 2009, 28 (08) :1251-1265
[5]   Multilevel minimum cross entropy threshold selection based on the firefly algorithm [J].
Horng, Ming-Huwi ;
Liou, Ren-Jean .
EXPERT SYSTEMS WITH APPLICATIONS, 2011, 38 (12) :14805-14811
[6]   Automated thresholding method (ATM) for biomass fraction determination using FISH and confocal microscopy [J].
Jubany, Irene ;
Lafuente, Javier ;
Carrera, Julian ;
Baeza, Juan A. .
JOURNAL OF CHEMICAL TECHNOLOGY AND BIOTECHNOLOGY, 2009, 84 (08) :1140-1145
[7]   A NEW METHOD FOR GRAY-LEVEL PICTURE THRESHOLDING USING THE ENTROPY OF THE HISTOGRAM [J].
KAPUR, JN ;
SAHOO, PK ;
WONG, AKC .
COMPUTER VISION GRAPHICS AND IMAGE PROCESSING, 1985, 29 (03) :273-285
[8]   A powerful and efficient algorithm for numerical function optimization: artificial bee colony (ABC) algorithm [J].
Karaboga, Dervis ;
Basturk, Bahriye .
JOURNAL OF GLOBAL OPTIMIZATION, 2007, 39 (03) :459-471
[9]   MINIMUM ERROR THRESHOLDING [J].
KITTLER, J ;
ILLINGWORTH, J .
PATTERN RECOGNITION, 1986, 19 (01) :41-47
[10]  
Kumar S.A., 2012, 3 INT C COMPUTING CO, P1