Outstanding Strengthening and Toughening Behavior of 3D-Printed Fiber-Reinforced Composites Designed by Biomimetic Interfacial Heterogeneity

被引:17
|
作者
Yu, Siwon [1 ,2 ]
Hwang, Yun Hyeong [2 ]
Lee, Kang Taek [3 ]
Kim, Sang Ouk [4 ]
Hwang, Jun Yeon [2 ]
Hong, Soon Hyung [1 ,5 ]
机构
[1] Korea Adv Inst Sci & Technol KAIST, Dept Mat Sci & Engn, 291 Daehak Ro, Daejeon 34141, South Korea
[2] Korea Inst Sci & Technol KIST, Inst Adv Composite Mat, Jeonbuk 55324, South Korea
[3] Korea Adv Inst Sci & Technol KAIST, Dept Mech Engn, 291 Daehak Ro, Daejeon 34141, South Korea
[4] Korea Adv Inst Sci & Technol KAIST, Natl Creat Res Initiat Ctr Multidimens Nanoscale, 291 Daehak Ro, Daejeon 34141, South Korea
[5] Jiaxing Univ, Nanotechnol Res Inst, Jiaxing, Peoples R China
基金
新加坡国家研究基金会;
关键词
3D printing; composites; fiber alignment; hierarchical structures; interfacial heterogeneity; MECHANICAL-PROPERTIES; MATRIX COMPOSITES; CARBON; ACID);
D O I
10.1002/advs.202103561
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
3D printing of fiber-reinforced composites is expected to be the forefront technology for the next-generation high-strength, high-toughness, and lightweight structural materials. The intrinsic architecture of 3D-printed composites closely represents biomimetic micro/macrofibril-like hierarchical structure composed of intermediate filament assembly among the micron-sized reinforcing fibers, and thus contributes to a novel mechanism to simultaneously improve mechanical properties and structural features. Notably, it is found that an interfacial heterogeneity between numerous inner interfaces in the hierarchical structure enables an exceptional increase in the toughness of composites. The strong interfacial adhesion between the fibers and matrix, with accompanying the inherently weak interfacial adhesion between intermediate filaments and the resultant interfacial voids, provide a close representation of the toughness behavior of natural architectures relying on the localized heterogeneity. Given the critical embedment length of fiber reinforcement, extraordinary improvement has been attained not only in the strength but also in toughness taking advantage of the synergy effect from the aforementioned nature-inspired features. Indeed, the addition of a small amount of short fiber to the brittle bio-filaments results in a noticeable increase of more than 200% in the tensile strength and modulus with further elongation increment. This article highlights the inherent structural hierarchy of 3D-printed composites and the relevant sophisticated mechanism for anomalous mechanical reinforcement.
引用
收藏
页数:13
相关论文
共 50 条
  • [41] Thermal conductivity of 3D-printed continuous pitch carbon fiber composites
    Olcun, Sinan
    Ibrahim, Yehia
    Isaacs, Caleb
    Karam, Mohamed
    Elkholy, Ahmed
    Kempers, Roger
    ADDITIVE MANUFACTURING LETTERS, 2023, 4
  • [42] Effect of printing parameters on 3D-printed carbon fiber-reinforced polymer composites under magnetic field control
    Lian, Kaipeng
    Yang, Li
    Zhu, Dongyue
    Gong, Xuebin
    Zhang, Haoran
    Wang, Kaifeng
    Li, Jingjing
    Yu, Wenqiang
    JOURNAL OF MANUFACTURING PROCESSES, 2023, 101 : 1443 - 1452
  • [43] Frequency and deflection responses of 3D-printed carbon fiber reinforced polylactic acid composites: Theoretical and experimental verification
    Kannan, Sridharan
    Manapaya, Apichat
    Selvaraj, Rajeshkumar
    POLYMER COMPOSITES, 2023, 44 (07) : 4095 - 4108
  • [44] On flexural behavior of 3D-printed continuous hybrid fiber reinforced composites: Experimental and multiscale modeling study
    Cao, Xi-Ao
    Zhu, Guohua
    Wang, Zhen
    Zhao, Xuan
    COMPOSITE STRUCTURES, 2025, 359
  • [45] Approach to evaluation of the overall strengthening and toughening effect of continuous fiber-reinforced ceramic matrix composites
    Wu, Shoujun
    Cheng, Laifei
    INTERNATIONAL JOURNAL OF MATERIALS RESEARCH, 2014, 105 (04) : 365 - 368
  • [46] Interfacial performance and build orientation of 3D-printed poly(ether-ketone-ketone) reinforced by continuous carbon fiber
    Fan, Tianxiang
    Zhou, Ziyan
    Zhang, Huiying
    Zhao, Xiaole
    Chen, Ye
    Wang, Huaping
    POLYMER COMPOSITES, 2024, 45 (04) : 3436 - 3447
  • [47] Atomistic Modeling of the Effect of Temperature on Interfacial Properties of 3D-Printed Continuous Carbon Fiber-Reinforced Polyamide 6 Composite: From Processing to Loading
    Wang, Shenru
    Yan, Xin
    Chang, Baoning
    Liu, Siqin
    Shao, Lihua
    Zhang, Wuxiang
    Zhu, Yingdan
    Ding, Xilun
    ACS APPLIED MATERIALS & INTERFACES, 2023, 15 (48) : 56454 - 56463
  • [48] Identification of Representative Equivalent Volumes on the Microstructure of 3D-Printed Fiber-Reinforced Thermoplastics Based on Statistical Characterization
    Dutra, Thiago Assis
    Ferreira, Rafael Thiago Luiz
    Resende, Hugo Borelli
    Oliveira, Luis Miguel
    Blinzler, Brina Jane
    Asp, Leif E.
    POLYMERS, 2022, 14 (05)
  • [49] Investigation on process window of 3D printed continuous glass fiber-reinforced thermosetting composites
    Najafloo, Behzad
    Rezadoust, Amir Masood
    Latifi, Masoud
    POLYMER COMPOSITES, 2024, 45 (01) : 448 - 460
  • [50] Performance of 3D-Printed Continuous-Carbon-Fiber-Reinforced Plastics with Pressure
    Zhang, Jun
    Zhou, Zude
    Zhang, Fan
    Tan, Yuegang
    Tu, Yiwen
    Yang, Baojun
    MATERIALS, 2020, 13 (02)