Forecasting transaction counts with integer-valued GARCH models

被引:8
作者
Aknouche, Abdelhakim [1 ,2 ]
Almohaimeed, Bader S. [1 ]
Dimitrakopoulos, Stefanos [3 ]
机构
[1] Qassim Univ, Coll Sci, Dept Math, POB 707, Buraydah 51431, Saudi Arabia
[2] Univ Sci & Technol Houari Boumediene, Fac Math, Bab Ezzouar, Algeria
[3] Univ Leeds, Leeds Univ Business Sch, Econ Div, Leeds LS2 9JT, W Yorkshire, England
关键词
count time series; forecasting; INGARCH models; MCMC; QUASI-LIKELIHOOD INFERENCE; TIME-SERIES; POISSON;
D O I
10.1515/snde-2020-0095
中图分类号
F [经济];
学科分类号
02 ;
摘要
Using numerous transaction data on the number of stock trades, we conduct a forecasting exercise with INGARCH models, governed by various conditional distributions; the Poisson, the linear and quadratic negative binomial, the double Poisson and the generalized Poisson. The model parameters are estimated with efficient Markov Chain Monte Carlo methods, while forecast evaluation is done by calculating point and density forecasts.
引用
收藏
页码:529 / 539
页数:11
相关论文
共 29 条
[11]   On weak dependence conditions for Poisson autoregressions [J].
Doukhan, Paul ;
Fokianos, Konstantinos ;
Tjostheim, Dag .
STATISTICS & PROBABILITY LETTERS, 2012, 82 (05) :942-948
[12]   Integer-valued GARCH process [J].
Ferland, Rene ;
Latour, Alain ;
Oraichi, Driss .
JOURNAL OF TIME SERIES ANALYSIS, 2006, 27 (06) :923-942
[13]   Poisson Autoregression [J].
Fokianos, Konstantinos ;
Rahbek, Anders ;
Tjostheim, Dag .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2009, 104 (488) :1430-1439
[14]  
Geweke JF., 1991, Federal Reserve Bank Minneapolis, V148, P169, DOI DOI 10.21034/SR.148
[15]   HIERARCHICAL MARKOV NORMAL MIXTURE MODELS WITH APPLICATIONS TO FINANCIAL ASSET RETURNS [J].
Geweke, John ;
Amisano, Gianni .
JOURNAL OF APPLIED ECONOMETRICS, 2011, 26 (01) :1-29
[16]  
Heinen A, 2003, MPRA
[17]   A performance analysis of prediction intervals for count time series [J].
Homburg, Annika ;
Weiss, Christian H. ;
Alwan, Layth C. ;
Frahm, Gabriel ;
Goeb, Rainer .
JOURNAL OF FORECASTING, 2021, 40 (04) :603-625
[18]   Evaluating Approximate Point Forecasting of Count Processes [J].
Homburg, Annika ;
Weiss, Christian H. ;
Alwan, Layth C. ;
Frahm, Gabriel ;
Goeb, Rainer .
ECONOMETRICS, 2019, 7 (03)
[19]   A fast universal self-tuned sampler within Gibbs sampling [J].
Martino, L. ;
Yang, H. ;
Luengo, D. ;
Kanniainen, J. ;
Corander, J. .
DIGITAL SIGNAL PROCESSING, 2015, 47 :68-83
[20]   Bayesian predictions of low count time series [J].
McCabe, BPM ;
Martin, GM .
INTERNATIONAL JOURNAL OF FORECASTING, 2005, 21 (02) :315-330