Wafer-scale selective area growth of GaN hexagonal prismatic nanostructures on c-sapphire substrate

被引:29
作者
Chen, X. J. [1 ]
Hwang, J. S. [2 ]
Perillat-Merceroz, G. [3 ,4 ]
Landis, S. [3 ]
Martin, B. [3 ]
Dang, D. Le Si [2 ]
Eymery, J. [1 ]
Durand, C. [1 ]
机构
[1] CEA, NPSC, Equipe Mixte CEA CNRS UJF Nanophys & Semicond, SP2M,NPSC, F-38054 Grenoble 9, France
[2] CNRS, Inst Neel, Equipe Mixte CEA CNRS UJF Nanophys & Semicond, F-38042 Grenoble 9, France
[3] CEA, LETI, F-38054 Grenoble 9, France
[4] CEA, INAC, SP2M, LEMMA, F-38054 Grenoble 9, France
关键词
Nanostructures; Selective epitaxy; Metalorganic vapor phase epitaxy; Nitrides; MOLECULAR-BEAM EPITAXY; VAPOR-PHASE EPITAXY; LATERAL OVERGROWTH; QUANTUM DOTS; EMISSION; INGAN; PHOTOLUMINESCENCE; TEMPERATURE; NANOWIRES; SURFACE;
D O I
10.1016/j.jcrysgro.2011.03.007
中图分类号
O7 [晶体学];
学科分类号
0702 ; 070205 ; 0703 ; 080501 ;
摘要
Selective area growth of GaN nanostructures has been performed on full 2 '' c-sapphire substrates using Si3N4 mask patterned by nanoimprint lithography (array of 400 nm diameter circular holes). A new process has been developed to improve the homogeneity of the nucleation selectivity of c-oriented hexagonal prismatic nanostructures at high temperature (1040 degrees C). It consists of an initial GaN nucleation step at 950 degrees C followed by ammonia annealing before high temperature growth. Structural analyses show that GaN nanostructures are grown in epitaxy with c-sapphire with lateral overgrowths on the mask. Strain and dislocations are observed at the interface due to the large GaN/sapphire lattice mismatch in contrast with the high quality of the relaxed crystals in the lateral overgrowth area. A cathodoluminescence study as a function of the GaN nanostructure size confirms these observations: the lateral overgrowth of GaN nanostructures has a low defect density and exhibits a stronger near band edge (NBE) emission than the crystal in direct epitaxy with sapphire. The shift of the NBE positions versus nanostructure size can be mainly attributed to a combination of compressive strain and silicon doping coming from surface mask diffusion. (C) 2011 Elsevier B.V. All rights reserved.
引用
收藏
页码:15 / 22
页数:8
相关论文
共 38 条
[1]   Progress in GaN-based quantum dots for optoelectronics applications [J].
Arakawa, Y .
IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS, 2002, 8 (04) :823-832
[2]   Continuous-flux MOVPE growth of position-controlled N-face GaN nanorods and embedded InGaN quantum wells [J].
Bergbauer, W. ;
Strassburg, M. ;
Koelper, Ch ;
Linder, N. ;
Roder, C. ;
Laehnemann, J. ;
Trampert, A. ;
Fuendling, S. ;
Li, S. F. ;
Wehmann, H-H ;
Waag, A. .
NANOTECHNOLOGY, 2010, 21 (30)
[3]   Homoepitaxial growth of catalyst-free GaN wires on N-polar substrates [J].
Chen, X. J. ;
Perillat-Merceroz, G. ;
Sam-Giao, D. ;
Durand, C. ;
Eymery, J. .
APPLIED PHYSICS LETTERS, 2010, 97 (15)
[4]   Systematic prediction of kinetically limited crystal growth morphologies [J].
Du, DX ;
Srolovitz, DJ ;
Coltrin, ME ;
Mitchell, CC .
PHYSICAL REVIEW LETTERS, 2005, 95 (15)
[5]   Quantum dot emission from site-controlled InGaN/GaN micropyramid arrays [J].
Edwards, PR ;
Martin, RW ;
Watson, IM ;
Liu, C ;
Taylor, RA ;
Rice, JH ;
Na, JH ;
Robinson, JW ;
Smith, JD .
APPLIED PHYSICS LETTERS, 2004, 85 (19) :4281-4283
[6]   Green light emission from InGaN multiple quantum wells grown on GaN pyramidal stripes using selective area epitaxy [J].
Feng, W. ;
Kuryatkov, V. V. ;
Chandolu, A. ;
Song, D. Y. ;
Pandikunta, M. ;
Nikishin, S. A. ;
Holtz, M. .
JOURNAL OF APPLIED PHYSICS, 2008, 104 (10)
[7]   Metal organic vapour phase epitaxy of GaN and lateral overgrowth [J].
Gibart, P .
REPORTS ON PROGRESS IN PHYSICS, 2004, 67 (05) :667-715
[8]   The controlled growth of GaN nanowires [J].
Hersee, Stephen D. ;
Sun, Xinyu ;
Wang, Xin .
NANO LETTERS, 2006, 6 (08) :1808-1811
[9]   Controlled surface diffusion in plasma-enhanced chemical vapor deposition of GaN nanowires [J].
Hou, Wen Chi ;
Hong, Franklin Chau-Nan .
NANOTECHNOLOGY, 2009, 20 (05)
[10]   III-nitrides: Growth, characterization, and properties [J].
Jain, SC ;
Willander, M ;
Narayan, J ;
Van Overstraeten, R .
JOURNAL OF APPLIED PHYSICS, 2000, 87 (03) :965-1006