Localization of Eosinophilic Esophagitis from H&E stained images using multispectral imaging

被引:9
作者
Bautista, Pinky A. [1 ]
Yagi, Yukako [1 ]
机构
[1] Harvard Univ, Massachusetts Gen Hosp, Sch Med, Dept Pathol, Boston, MA 02115 USA
关键词
Tissue Component; Multispectral Imaging; Eosinophilic Esophagitis; Spectral Transmittance; Spectral Sample;
D O I
10.1186/1746-1596-6-S1-S2
中图分类号
R36 [病理学];
学科分类号
100104 ;
摘要
This study is an initial investigation on the capability of multispectral imaging to capture subtle spectral information that would enable the automatic delineation between the eosinophilic esophagitis and other eosin stained tissue components, especially the RBCs. In the method, a principal component analysis (PCA) was performed on the spectral transmittance samples of the different tissue components, excluding however the transmittance samples of the eosinophilic esophagitis. From the average spectral error configuration of the eosinophilic esophagitis transmittance samples, i.e. the difference between the actual transmittance and the estimated transmittance using m PC vectors, we indentified two spectral bands by which we can localize the eosinophils. Initial results show the possibility of automatically localizing the eosinophilic esophagitis by utilizing spectral information.
引用
收藏
页数:8
相关论文
共 16 条
  • [1] Localization of Eosinophilic Esophagitis from H&E stained images using multispectral imaging
    Pinky A Bautista
    Yukako Yagi
    Diagnostic Pathology, 6
  • [2] Comparison of deep learning models for digital H&E staining from unpaired label-free multispectral microscopy images
    Salido, Jesus
    Vallez, Noelia
    Gonzalez-Lopez, Lucia
    Deniz, Oscar
    Bueno, Gloria
    COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE, 2023, 235
  • [3] Comparative Performance Analysis of Stained Histopathology Specimens using RGB and Multispectral Imaging
    Qi, Xin
    Xing, Fuyong
    Foran, David J.
    Yang, Lin
    MEDICAL IMAGING 2011: COMPUTER-AIDED DIAGNOSIS, 2011, 7963
  • [4] Detecting Spongiosis in Stained Histopathological Specimen using Multispectral Imaging and Machine Learning
    Abeysekera, Sanush
    Ooi, Melanie Po-Leen
    Kuang, Ye Chow
    Tan, Chee Pin
    Hassan, Sharifah Syed
    2014 IEEE SENSORS APPLICATIONS SYMPOSIUM (SAS), 2014, : 195 - 200
  • [5] High-contrast subcutaneous vein detection and localization using multispectral imaging
    Wang, Fengtao
    Behrooz, Ali
    Morris, Michael
    Adibi, Ali
    JOURNAL OF BIOMEDICAL OPTICS, 2013, 18 (05)
  • [6] Analysis of Compound Stained Cervical Cell Images Using Multi-Spectral Imaging
    Fang, Run
    Zeng, Libo
    Yi, Fan
    APPLIED SCIENCES-BASEL, 2021, 11 (12):
  • [7] Eosinophilic Esophagitis Multi-label Feature Recognition on Whole Slide Imaging Using Transfer Learning
    Shi, Yuxuan
    Liu, Quan
    Xu, Jiachen
    Asad, Zuhayr
    Cui, Can
    Correa, Hernan
    Choksi, Yash
    Hiremath, Girish
    Huo, Yuankai
    MEDICAL IMAGING 2022: DIGITAL AND COMPUTATIONAL PATHOLOGY, 2022, 12039
  • [8] A New Method to Evaluate Lower Esophageal Distension Capacity in Eosinophilic Esophagitis by Using Functional Lumen Imaging Probe (EndoFLIP™)
    Casabona-Frances, Sergio
    Sanz-Garcia, Ancor
    Ortega, Guillermo J.
    Santander, Cecilio
    Perez-Fernandez, Teresa
    Majano, Pedro
    Olalla, Jose Maria
    Juarez-Tosina, Rocio
    Mueller, Ralph
    Attwood, Stephen
    Lucendo, Alfredo
    DIAGNOSTICS, 2024, 14 (02)
  • [9] From multispectral imaging of autofluorescence to chemical and sensory images of lipid oxidation in cod caviar paste
    Airado-Rodriguez, Diego
    Hoy, Martin
    Skaret, Josefine
    Wold, Jens Petter
    TALANTA, 2014, 122 : 70 - 79
  • [10] Autofluorescence removal from fluorescence tomography data using multispectral imaging
    Psycharakis, Stylianos
    Zacharakis, Giannis
    Garofalakis, Anikitos
    Favicchio, Rosy
    Ripoll, Jorge
    MOLECULAR IMAGING, 2007, 6626