A Comparison Principle for Parabolic Complex Monge-Ampere Equations

被引:0
|
作者
Do, Hoang-Son [1 ]
Thanh Cong Ngoc Pham [2 ]
机构
[1] Vietnam Acad Sci & Technol, Inst Math, 18 Hoang Quoc Viet, Hanoi, Vietnam
[2] VNU Univ Sci, Dept Math, 334 Nguyen Trai, Hanoi, Vietnam
关键词
Viscosity solutions; Parabolic Monge-Ampere equation; Pluripotential theory; VISCOSITY SOLUTIONS; FLOWS;
D O I
10.1007/s12220-021-00748-4
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we study the Cauchy-Dirichlet problem for parabolic complex Monge-Ampere equations on strongly pseudoconvex domains using the viscosity method. We prove a comparison principle for parabolic complex Monge-Ampere equations and use it to study the existence and uniqueness of viscosity solution in certain cases where the sets {z is an element of Omega : f(t, z) = 0} may be pairwise disjoint.
引用
收藏
页数:19
相关论文
共 50 条
  • [1] Viscosity solutions to parabolic complex Monge-Ampere equations
    Hoang-Son Do
    Giang Le
    Tat Dat To
    CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2020, 59 (02)
  • [2] A Comparison Principle for Parabolic Complex Monge–Ampère Equations
    Hoang-Son Do
    Thanh Cong Ngoc Pham
    The Journal of Geometric Analysis, 2022, 32
  • [3] Weak subsolutions to complex Monge-Ampere equations
    Guedj, Vincent
    Lu, Chinh H.
    Zeriahi, Ahmed
    JOURNAL OF THE MATHEMATICAL SOCIETY OF JAPAN, 2019, 71 (03) : 727 - 738
  • [4] MULTI-VALUED SOLUTIONS TO A CLASS OF PARABOLIC MONGE-AMPERE EQUATIONS
    Dai, Limei
    COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2014, 13 (03) : 1061 - 1074
  • [5] The obstacle problem for parabolic Monge-Ampere equation
    Lee, Ki-Ahm
    Lee, Taehun
    Park, Jinwan
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2022, 309 : 608 - 649
  • [6] Ancient solutions of exterior problem of parabolic Monge-Ampere equations
    Zhou, Ziwei
    Gong, Shuyu
    Bao, Jiguang
    ANNALI DI MATEMATICA PURA ED APPLICATA, 2021, 200 (04) : 1605 - 1624
  • [7] Reflection Principle for the Complex Monge-Ampere Equation and Plurisubharmonic Functions
    Koskenoja, Mika
    ADVANCES IN APPLIED CLIFFORD ALGEBRAS, 2019, 29 (04)
  • [8] Viscosity solutions to quaternionic Monge-Ampere equations
    Wan, Dongrui
    Wang, Wei
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2016, 140 : 69 - 81
  • [9] Exterior problems for a parabolic Monge-Ampere equation
    Dai, Limei
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2014, 100 : 99 - 110
  • [10] Asymptotic behavior on a kind of parabolic Monge-Ampere equation
    Wang, Bo
    Bao, Jiguang
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2015, 259 (01) : 344 - 370