A method for reducing garbage collection overhead of SSD using machine learning algorithms

被引:0
作者
Park, Jung Kyu [1 ]
Kim, Jaeho [2 ]
机构
[1] Seoul Womens Univ, Dept Digital Media Design & Applicat, Seoul 01797, South Korea
[2] UNIST, Sch Elect & Comp Engn, Ulsan 44919, South Korea
来源
2017 INTERNATIONAL CONFERENCE ON INFORMATION AND COMMUNICATION TECHNOLOGY CONVERGENCE (ICTC) | 2017年
关键词
Garbage Collection; Machine Learning; SSD; TRIM;
D O I
暂无
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
In this paper, we attempt to manage GC overhead at the operating system level. In our approach, first, we use a machine learning technique to devise a GC detecting mechanism at the operating system level, and second, we show that by making use of this mechanism performance variance normally observed on SSDs can be reduced. We develop a GC-detector that detects garbage collection of SSDs and request TRIM operations to the SSD when GC is detected. Experimental results running the GC detector show increase average bandwidth and low performance variance compared to when not using GC-detector.
引用
收藏
页码:775 / 777
页数:3
相关论文
共 11 条
  • [1] Harrington P., 2012, MACHINE LEARNING ACT
  • [2] A Hybrid Machine Learning Method for Intrusion Detection
    Hemati, H. R.
    Ghasemzadeh, M.
    Meinel, C.
    [J]. INTERNATIONAL JOURNAL OF ENGINEERING, 2016, 29 (09): : 1242 - 1246
  • [3] Iwasaki T. O., 2015, P 2015 IEEE INT MEM
  • [4] Kim J., 2012, P 29 IEEE S MASS STO
  • [5] Dynamic Garbage Collection Scheme Based on Past Update Times for NAND Flash-based Consumer Electronics
    Lin, Mingwei
    Yao, Zhiqiang
    [J]. IEEE TRANSACTIONS ON CONSUMER ELECTRONICS, 2015, 61 (04) : 478 - 483
  • [6] Moedjiono S., 2016, P INT C INF COMP ICI
  • [7] A Fast k-means Algorithm using Cluster Shifting to Produce Compact and Separate Clusters
    Pakhira, Malay K.
    [J]. INTERNATIONAL JOURNAL OF ENGINEERING, 2015, 28 (01): : 35 - 43
  • [8] Quinlan Ross., 1992, C4.5: Programs for Machine Learning
  • [9] Shahidi N., 2017, P INT C HIGH PERF CO
  • [10] Verschoren R., 2016, P 32 S MASS STOR SYS