Infinite type germs of real analytic pseudoconvex domains in C3

被引:3
作者
Fornaess, John Erik [1 ]
Stensones, Berit [1 ]
机构
[1] Univ Michigan, Dept Math, Ann Arbor, MI 48109 USA
关键词
plurisubharmonic functions; D'Angelo type;
D O I
10.1080/17476933.2010.534144
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In Lampert [On the boundary regularity of biholomorphic mappings, Contributions to several complex variables, Aspects Math. E9 (1986), pp. 193-215] and D'Angelo [Several Complex Variables and the Geometry of real Hypersurfaces, Studies in Advanced Mathematics, CRC Press, Boca Raton, FL, 1993, ISBN: 0-8493-8272-6] Lempert and D'Angelo showed that germs of real analytic sets in C-n of infinite type contain a complex curve. In this article we discuss a very special case of their result, germs of real analytic pseudoconvex domains in C-3. We reprove their theorem using a geometric construction which sheds light on the intricate structure of such boundaries in the presence of complex curves of high order tangency. The proof of Lempert and D'Angelo is somewhat more of an ideal theoretic nature.
引用
收藏
页码:705 / 717
页数:13
相关论文
共 5 条
[1]  
[Anonymous], 1993, SEVERAL COMPLEX VARI
[2]   Plurisubharmonic polynomials and bumping [J].
Bharali, Gautam ;
Stensones, Berit .
MATHEMATISCHE ZEITSCHRIFT, 2009, 261 (01) :39-63
[3]   PSEUDOCONVEX DOMAINS WITH REAL-ANALYTIC BOUNDARY [J].
DIEDERICH, K ;
FORNAESS, JE .
ANNALS OF MATHEMATICS, 1978, 107 (03) :371-384
[4]   SUB-ELLIPTICITY OF THE DELTABAR-NEUMANN PROBLEM ON PSEUDO-CONVEX DOMAINS - SUFFICIENT CONDITIONS [J].
KOHN, JJ .
ACTA MATHEMATICA, 1979, 142 (1-2) :79-118
[5]  
LEMPERT L, 1986, ASPECTS MATH E, V9, P193