Well-posedness and Energy Decay of Solutions to a Nonlinear Bresse System with Delay Terms

被引:0
|
作者
Benaissa, Abbes [1 ]
Miloudi, Mostefa [1 ]
Mokhtari, Mokhtar [1 ]
机构
[1] Univ Djillali Liabes Sidi Bel Abbes, Lab Anal & Control Partial Differential Equat, POB 89, Sidi Bel Abbes 22000, Algeria
关键词
Nonlinear Bresse system; Delay terms; Faedo-Galerkin method; Decay rate; Multiplier method; TIMOSHENKO SYSTEM; WAVE-EQUATION; BOUNDARY; STABILIZATION; STABILITY; RATES;
D O I
10.1007/s12591-016-0339-1
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the Bresse system in bounded domain with delay terms in the nonlinear internal feedbacks {rho(1)phi(tt)-Gh(phi(x)+psi+l omega)x-lEh(omega(x)-l phi)+mu(1)g(1)(phi(t)(x,t))+mu(2)g(2)(phi(t)(x,t-tau(1)))=0 rho(2)psi(tt)-EI psi(xx)+Gh(phi(x)+psi+l omega)+(mu(1)) over tilde(g(1)) over tilde(psi(t)(x,t))+(mu(2)) over tilde(g(2)) over tilde(psi(t)(x,t-tau(2)))=0 rho(1)omega(tt)-Eh(omega(x)-l(phi))(x)+lGh(phi(x)+psi+l omega)+(sic)u(1) (sic)g(1)(omega(t)(x,t))+(sic)mu(2)(sic)(g2)(omega t(x,t-tau(3)))=0 and prove the global existence of its solutions in Sobolev spaces by means by means of the energy method combined with the Faedo-Galerkin procedure under a condition between the weight of the delay terms in the feedbacks and the weight of the terms without delay. Furthermore, we study the asymptotic behavior of solutions using multiplier method and some weighted integral inequalities.
引用
收藏
页码:447 / 478
页数:32
相关论文
共 50 条
  • [31] Well-posedness and exponential decay for a porous thermoelastic system with second sound and a time-varying delay term in the internal feedback
    Liu, Wenjun
    Chen, Miaomiao
    CONTINUUM MECHANICS AND THERMODYNAMICS, 2017, 29 (03) : 731 - 746
  • [32] Global existence and energy decay of solutions to a viscoelastic Timoshenko beam system with a nonlinear delay term
    Djilali, Laid
    Benaissa, Abbes
    Benaissa, Abdelkader
    APPLICABLE ANALYSIS, 2016, 95 (12) : 2637 - 2660
  • [33] Well-posedness and dynamics for the von Karman equation with memory and nonlinear time-varying delay
    Cui, Xiaona
    Li, Ke
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2023, 46 (14) : 15481 - 15505
  • [34] WELL-POSEDNESS AND EXPONENTIAL DECAY FOR PIEZOELECTRIC BEAMS WITH DISTRIBUTED DELAY TERM
    Loucif, Sami
    Guefaifia, Rafik
    Zitouni, Salah
    Ardjouni, Abdelouaheb
    MEMOIRS ON DIFFERENTIAL EQUATIONS AND MATHEMATICAL PHYSICS, 2024, 91 : 85 - 104
  • [35] Global well-posedness and exponential decay of fully dynamic and electrostatic or quasi-static piezoelectric beams subject to a neutral delay
    Loucif, Sami
    Guefaifia, Rafik
    Zitouni, Salah
    Khochemane, Houssem Eddine
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2023, 74 (03):
  • [36] Well-posedness for a class of wave equation with past history and a delay
    Liu, Gongwei
    Zhang, Hongwei
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2016, 67 (01):
  • [37] Decay rate of the solutions to the Cauchy problem of the Bresse system in thermoelasticity of type III with distributed delay
    Choucha, Abdelbaki
    Boulaaras, Salah
    Jan, Rashid
    Guefaifia, Rafik
    BOUNDARY VALUE PROBLEMS, 2023, 2023 (01)
  • [38] Well-Posedness and Energy Decay Rates for a Timoshenko-Type System with Internal Time-Varying Delay in the Displacement
    Braik, Abdelkader
    Mirgani, Safa M.
    Hassan, Eltigani I.
    Zennir, Khaled
    SYMMETRY-BASEL, 2023, 15 (10):
  • [39] Well-posedness and exponential stability for the logarithmic Lame system with a time delay
    Yuksekkaya, Hazal
    Piskin, Erhan
    Kafini, Mohammad M.
    Al-Mahdi, Adel M.
    APPLICABLE ANALYSIS, 2024, 103 (02) : 506 - 518
  • [40] Global well-posedness and exponential stability results of a class of Bresse-Timoshenko-type systems with distributed delay term
    Choucha, Abdelbaki
    Ouchenane, Djamel
    Zennir, Khaled
    Feng, Baowei
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2020,