Extreme Learning Machine With Composite Kernels for Hyperspectral Image Classification

被引:150
作者
Zhou, Yicong [1 ]
Peng, Jiangtao [2 ,3 ,4 ]
Chen, C. L. Philip [1 ]
机构
[1] Univ Macau, Dept Comp & Informat Sci, Macau 999078, Peoples R China
[2] Hubei Univ, Fac Math & Stat, Wuhan 430062, Peoples R China
[3] Hubei Univ, Key Lab Appl Math Hubei Prov, Wuhan 430062, Peoples R China
[4] Univ Macau, Dept Comp & Informat Sci, Macau 999078, Peoples R China
基金
中国国家自然科学基金;
关键词
Composite kernel (CK); extreme learning machine (ELM); hyperspectral image (HSI) classification; SUPPORT VECTOR MACHINES; REMOTE-SENSING IMAGES; SPATIAL CLASSIFICATION; NEURAL-NETWORKS; SELECTION; SVM;
D O I
10.1109/JSTARS.2014.2359965
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Due to its simple, fast, and good generalization ability, extreme learning machine (ELM) has recently drawn increasing attention in the pattern recognition and machine learning fields. To investigate the performance of ELM on the hyperspectral images (HSIs), this paper proposes two spatial-spectral composite kernel (CK) ELM classification methods. In the proposed CK framework, the single spatial or spectral kernel consists of activation-function-based kernel and general Gaussian kernel, respectively. The proposed methods inherit the advantages of ELM and have an analytic solution to directly implement the multiclass classification. Experimental results on three benchmark hyperspectral datasets demonstrate that the proposed ELM with CK methods outperform the general ELM, SVM, and SVM with CK methods.
引用
收藏
页码:2351 / 2360
页数:10
相关论文
共 43 条
[1]   The sample complexity of pattern classification with neural networks: The size of the weights is more important than the size of the network [J].
Bartlett, PL .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1998, 44 (02) :525-536
[2]   Differential Evolution Extreme Learning Machine for the Classification of Hyperspectral Images [J].
Bazi, Yakoub ;
Alajlan, Naif ;
Melgani, Farid ;
AlHichri, Haikel ;
Malek, Salim ;
Yager, Ronald R. .
IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2014, 11 (06) :1066-1070
[3]   Classification and feature extraction for remote sensing images from urban areas based on morphological transformations [J].
Benediktsson, JA ;
Pesaresi, M ;
Arnason, K .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2003, 41 (09) :1940-1949
[4]   Hyperspectral Remote Sensing Data Analysis and Future Challenges [J].
Bioucas-Dias, Jose M. ;
Plaza, Antonio ;
Camps-Valls, Gustavo ;
Scheunders, Paul ;
Nasrabadi, Nasser M. ;
Chanussot, Jocelyn .
IEEE GEOSCIENCE AND REMOTE SENSING MAGAZINE, 2013, 1 (02) :6-36
[5]   Composite kernels for hyperspectral image classification [J].
Camps-Valls, G ;
Gomez-Chova, L ;
Muñoz-Marí, J ;
Vila-Francés, J ;
Calpe-Maravilla, J .
IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2006, 3 (01) :93-97
[6]   Kernel-based methods for hyperspectral image classification [J].
Camps-Valls, G ;
Bruzzone, L .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2005, 43 (06) :1351-1362
[7]   Semi-supervised graph-based hyperspectral image classification [J].
Camps-Valls, Gustavo ;
Bandos, Tatyana V. ;
Zhou, Dengyong .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2007, 45 (10) :3044-3054
[8]   Advances in Hyperspectral Image Classification [J].
Camps-Valls, Gustavo ;
Tuia, Devis ;
Bruzzone, Lorenzo ;
Benediktsson, Jon Atli .
IEEE SIGNAL PROCESSING MAGAZINE, 2014, 31 (01) :45-54
[9]   LIBSVM: A Library for Support Vector Machines [J].
Chang, Chih-Chung ;
Lin, Chih-Jen .
ACM TRANSACTIONS ON INTELLIGENT SYSTEMS AND TECHNOLOGY, 2011, 2 (03)
[10]   A rapid supervised learning neural network for function interpolation and approximation [J].
Chen, CLP .
IEEE TRANSACTIONS ON NEURAL NETWORKS, 1996, 7 (05) :1220-1230