Accounting for extrinsic variability in the estimation of stochastic rate constants

被引:20
作者
Koeppl, Heinz [1 ]
Zechner, Christoph [1 ]
Ganguly, Arnab [1 ]
Pelet, Serge [2 ]
Peter, Matthias [2 ]
机构
[1] ETH, Automat Control Lab, D ITET, BISON Grp, CH-8092 Zurich, Switzerland
[2] ETH, D BIOL, Inst Biochem, CH-188093 Zurich, Switzerland
基金
瑞士国家科学基金会;
关键词
cell-to-cell variability; stochastic chemical kinetics; mass conservation; Bayesian estimation; MAPK Hog1 signaling pathway; GENE-EXPRESSION; INFERENCE;
D O I
10.1002/rnc.2804
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Single-cell recordings of transcriptional and post-transcriptional processes reveal the inherent stochasticity of cellular events. However, to a large extent, the observed variability in isogenic cell populations is due to extrinsic factors, such as difference in expression capacity, cell volume and cell cycle stageto name a few. Thus, such experimental data represents a convolution of effects from stochastic kinetics and extrinsic noise sources. Recent parameter inference schemes for single-cell data just account for variability because of molecular noise. Here, we present a Bayesian inference scheme that deconvolutes the two sources of variability and enables us to obtain optimal estimates of stochastic rate constants of low copy-number events and extract statistical information about cell-to-cell variability. In contrast to previous attempts, we model extrinsic noise by a variability in the abundance of mass-conserved species, rather than a variability in kinetic parameters. We apply the scheme to a simple model of the osmostress-induced transcriptional activation in budding yeast. Copyright (c) 2012 John Wiley & Sons, Ltd.
引用
收藏
页码:1103 / 1119
页数:17
相关论文
共 37 条
[11]   Structure and function of a transcriptional network activated by the MAPK Hog1 [J].
Capaldi, Andrew P. ;
Kaplan, Tommy ;
Liu, Ying ;
Habib, Naomi ;
Regev, Aviv ;
Friedman, Nir ;
O'Shea, Erin K. .
NATURE GENETICS, 2008, 40 (11) :1300-1306
[12]   UNDERSTANDING THE METROPOLIS-HASTINGS ALGORITHM [J].
CHIB, S ;
GREENBERG, E .
AMERICAN STATISTICIAN, 1995, 49 (04) :327-335
[13]   Regulated cell-to-cell variation in a cell-fate decision system [J].
Colman-Lerner, A ;
Gordon, A ;
Serra, E ;
Chin, T ;
Resnekov, O ;
Endy, D ;
Pesce, CG ;
Brent, R .
NATURE, 2005, 437 (7059) :699-706
[14]   Multilayered control of gene expression by stress-activated protein kinases [J].
de Nadal, Eulalia ;
Posas, Francesc .
EMBO JOURNAL, 2010, 29 (01) :4-13
[15]   Stochastic gene expression in a single cell [J].
Elowitz, MB ;
Levine, AJ ;
Siggia, ED ;
Swain, PS .
SCIENCE, 2002, 297 (5584) :1183-1186
[16]  
Furusawa Chikara, 2005, Biophysics (Nagoya-shi), V1, P25, DOI 10.2142/biophysics.1.25
[17]   A RIGOROUS DERIVATION OF THE CHEMICAL MASTER EQUATION [J].
GILLESPIE, DT .
PHYSICA A, 1992, 188 (1-3) :404-425
[18]  
GOLIGHTLY A, 2008, COMPUT STAT DATA AN, V83, P1891
[19]   A maximum likelihood estimator for parameter distributions in heterogeneous cell populations [J].
Hasenauer, J. ;
Waldherr, S. ;
Radde, N. ;
Doszczak, M. ;
Scheurich, P. ;
Allgoewer, F. .
ICCS 2010 - INTERNATIONAL CONFERENCE ON COMPUTATIONAL SCIENCE, PROCEEDINGS, 2010, 1 (01) :1649-1657
[20]   MONTE-CARLO SAMPLING METHODS USING MARKOV CHAINS AND THEIR APPLICATIONS [J].
HASTINGS, WK .
BIOMETRIKA, 1970, 57 (01) :97-&