Cellulose nanofibers/silk fibroin nanohybrid sponges with highly ordered and multi-scale hierarchical honeycomb structure

被引:19
作者
Gao, Kezheng [1 ]
Guo, Yaqing [1 ]
Niu, Qingyuan [1 ]
Han, Lifeng [1 ]
Zhang, Linsen [1 ]
Zhang, Yong [1 ]
Wang, Lizhen [1 ]
机构
[1] Zhengzhou Univ Light Ind, Sch Mat & Chem Engn, State Lab Surface & Interface Sci & Technol, Zhengzhou 450002, Henan, Peoples R China
基金
中国国家自然科学基金;
关键词
Cellulose nanofibers; Silk fibroin; Nanohybrid sponges; Biomimetic honeycomb structure; TEMPO-MEDIATED OXIDATION; SILK FIBROIN; MIDDLE DIVISION; STATE; MICROFIBRILS; RHEOLOGY;
D O I
10.1007/s10570-017-1545-x
中图分类号
TB3 [工程材料学]; TS [轻工业、手工业、生活服务业];
学科分类号
0805 ; 080502 ; 0822 ;
摘要
Highly ordered cellulose nanofibers/silk fibroin nanohybrid (CSN) honeycomb materials with multi-scale hierarchical architectures are successfully prepared from CSN hydrogel precursors using unidirectional freeze-drying technique. Cellulose nanofibers have an outstanding highly ordered honeycomb structure-directing function in composite hydrogel. However, silk fibroin does not have such function. Therefore, the properties of the CSN sponges can be effectively adjusted by simple changing the ratio of cellulose nanofibers to silk fibroin. When the content of silk fibroin reaches 50%, the CSN-50 sponge exhibits a nearly perfect highly ordered honeycomb structure with multi-scale hierarchical architectures. And the Brunauer-Emmett-Teller specific surface area is about 120 m(2) g(-1).
引用
收藏
页码:429 / 437
页数:9
相关论文
共 39 条
[11]   TEMPO-oxidized cellulose nanofibers [J].
Isogai, Akira ;
Saito, Tsuguyuki ;
Fukuzumi, Hayaka .
NANOSCALE, 2011, 3 (01) :71-85
[12]   Silk fibroin-based biodegradable piezoelectric composite nanogenerators using lead-free ferroelectric nanoparticles [J].
Kim, Kyeong Nam ;
Chun, Jinsung ;
Chae, Song A. ;
Ahn, Chang Won ;
Kim, Ill Won ;
Kim, Sang-Woo ;
Wang, Zhong Lin ;
Baik, Jeong Min .
NANO ENERGY, 2015, 14 :87-94
[13]   Rheological properties of microfibrillar suspension of TEMPO-oxidized pulp [J].
Lasseuguette, Elsa ;
Roux, Denis ;
Nishiyama, Yoshiharu .
CELLULOSE, 2008, 15 (03) :425-433
[14]   The Fixation Effect of a Silk Fibroin-Bacterial Cellulose Composite Plate in Segmental Defects of the Zygomatic Arch An Experimental Study [J].
Lee, Jung Min ;
Kim, Ji Heui ;
Lee, Ok Joo ;
Park, Chan Hum .
JAMA OTOLARYNGOLOGY-HEAD & NECK SURGERY, 2013, 139 (06) :629-635
[15]   Freeze casting of porous materials: review of critical factors in microstructure evolution [J].
Li, W. L. ;
Lu, K. ;
Walz, J. Y. .
INTERNATIONAL MATERIALS REVIEWS, 2012, 57 (01) :37-60
[16]   Conformational transition and liquid crystalline state of regenerated silk fibroin in water [J].
Li, Xin-Gui ;
Wu, Li -Ya ;
Huang, Mei -Rong ;
Shao, Hui-Li ;
Hu, Xue-Chao .
BIOPOLYMERS, 2008, 89 (06) :497-505
[17]   Functionalization of Silk Fibroin Materials at Mesoscale [J].
Lin, Naibo ;
Cao, Liwei ;
Huang, Qiaoling ;
Wang, Changyong ;
Wang, Yan ;
Zhou, Jin ;
Liu, Xiang-Yang .
ADVANCED FUNCTIONAL MATERIALS, 2016, 26 (48) :8885-8902
[18]   Lithium Storage into Carbonaceous Materials Obtained from Sugarcane Bagasse [J].
Matsubara, Elaine Y. ;
Lala, Stella M. ;
Rosolen, Jose Mauricio .
JOURNAL OF THE BRAZILIAN CHEMICAL SOCIETY, 2010, 21 (10) :1877-1884
[19]   Topochemistry of carboxylated cellulose nanocrystals resulting from TEMPO-mediated oxidation [J].
Montanari, S ;
Rountani, M ;
Heux, L ;
Vignon, MR .
MACROMOLECULES, 2005, 38 (05) :1665-1671
[20]   Polypyrrole/cellulose nanofiber aerogel as a supercapacitor electrode material [J].
Niu, Qingyuan ;
Guo, Yaqing ;
Gao, Kezheng ;
Shao, Ziqiang .
RSC ADVANCES, 2016, 6 (110) :109143-109149