Nonlinear Modes in Finite-Dimensional PT-Symmetric Systems

被引:152
|
作者
Zezyulin, D. A. [1 ]
Konotop, V. V.
机构
[1] Univ Lisbon, Fac Ciencias, Ctr Fis Teor & Computac, P-1649003 Lisbon, Portugal
关键词
OPTICAL LATTICES; SOLITONS; COUPLERS; HERMITICITY; STABILITY; SPECTRUM;
D O I
10.1103/PhysRevLett.108.213906
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
By rearrangements of waveguide arrays with gain and losses one can simulate transformations among parity-time (PT-) symmetric systems not affecting their pure real linear spectra. Subject to such transformations, however, the nonlinear properties of the systems undergo significant changes. On an example of an array of four waveguides described by the discrete nonlinear Schrodinger equation with dissipation and gain, we show that the equivalence of the underlying linear spectra does not imply similarity of the structure or stability of the nonlinear modes in the arrays. Even the existence of one-parametric families of nonlinear modes is not guaranteed by the PT symmetry of a newly obtained system. In addition, the stability is not directly related to the PT symmetry: stable nonlinear modes exist even when the spectrum of the linear array is not purely real. We use a graph representation of PT-symmetric networks allowing for a simple illustration of linearly equivalent networks and indicating their possible experimental design.
引用
收藏
页数:5
相关论文
共 50 条
  • [31] Optical solitons in PT-symmetric nonlinear couplers with gain and loss
    Alexeeva, N. V.
    Barashenkov, I. V.
    Sukhorukov, Andrey A.
    Kivshar, Yuri S.
    PHYSICAL REVIEW A, 2012, 85 (06):
  • [32] Modulational instability in a PT-symmetric vector nonlinear Schrodinger system
    Cole, J. T.
    Makris, K. G.
    Musslimani, Z. H.
    Christodoulides, D. N.
    Rotter, S.
    PHYSICA D-NONLINEAR PHENOMENA, 2016, 336 : 53 - 61
  • [33] Soliton dynamics in partially PT-symmetric two-dimensional Bessel lattices
    Felix-Rendon, Ulises
    Iakushev, Denis
    Bilal, Muhammad Musavir
    Lopez-Aguayo, Servando
    PHYSICA SCRIPTA, 2024, 99 (10)
  • [34] Optical bistability in nonlinear periodical structures with PT-symmetric potential
    Liu, Jibing
    Xie, Xiao-Tao
    Shan, Chuan-Jia
    Liu, Tang-Kun
    Lee, Ray-Kuang
    Wu, Ying
    LASER PHYSICS, 2015, 25 (01)
  • [35] PT-Symmetric Dimer in a Generalized Model of Coupled Nonlinear Oscillators
    Cuevas-Maraver, Jesus
    Khare, Avinash
    Kevrekidis, Panayotis G.
    Xu, Haitao
    Saxena, Avadh
    INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2015, 54 (11) : 3960 - 3985
  • [36] Finite element Calculations of PT-Symmetric Bose-Einstein Condensates
    Haag, Daniel
    Dast, Dennis
    Cartarius, Holger
    Wunner, Guenter
    INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2015, 54 (11) : 4100 - 4109
  • [37] PT-symmetric sine-Gordon breathers
    Lu, Nan
    Kevrekidis, Panayotis G.
    Cuevas-Maraver, Jesus
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2014, 47 (45)
  • [38] Superoscillatory PT-symmetric potentials
    Eliezer, Yaniv
    Bahabad, Alon
    Malomed, Boris A.
    PHYSICAL REVIEW A, 2018, 98 (04)
  • [39] Mode pairs in PT-symmetric multimode waveguides
    Huang, Changming
    Ye, Fangwei
    Chen, Xianfeng
    PHYSICAL REVIEW A, 2014, 90 (04):
  • [40] Global Existence of Solutions to Coupled PT-Symmetric Nonlinear Schrodinger Equations
    Pelinovsky, Dmitry E.
    Zezyulin, Dmitry A.
    Konotop, Vladimir V.
    INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2015, 54 (11) : 3920 - 3931