Enhanced photocatalytic water splitting of g-C3N4 loaded with Fe doped Co3O4 and Pt dual-cocatalysts

被引:27
作者
Wang, Kailin [1 ]
Yang, Songyu [1 ]
Wu, Yan [1 ]
机构
[1] China Univ Geosci, Fac Mat Sci & Chem, Engn Res Ctr Nanogeo Mat, Minist Educ, 388 Lumo Rd, Wuhan 430074, Peoples R China
来源
JOURNAL OF ENVIRONMENTAL CHEMICAL ENGINEERING | 2022年 / 10卷 / 05期
基金
中国国家自然科学基金;
关键词
g-C3N4; Fe-Co3O4; Photocatalysis; Hydrogen production; Dual cocatalysts; HIGHLY-EFFICIENT; NANOSHEET; HETEROSTRUCTURE; HETEROJUNCTION; ELECTROLYTE; PERFORMANCE; GENERATION; INTERFACE; COMPOSITE; EVOLUTION;
D O I
10.1016/j.jece.2022.108353
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Dual cocatalysts play an important role in photocatalytic water splitting to hydrogen production. In this paper, Fe-doped Co3O4 (Fe-Co3O4) and Pt were loaded on the surface of g-C3N4 to enhance the water photocatalytic splitting, in which Fe-Co3O4 was used as an oxidation cocatalyst to capture the photo-generated holes of g-C3N4, and Pt was used as a reduction cocatalyst to transfer photo-generated electrons. Under the irradiation of visible light, its hydrogen production rate reaches up to 3.015 mmol g(-1 )h(-1), which is 3.01 times higher than that of g-C3N4 loaded with Pt. Pt and Fe-Co3O4 dual cocatalysts not only promote the migration rate of photo-generated electrons and holes on the surface of g-C3N4 , but also improve the light absorption capacity of visible light. The interfacial electric field built from the p-n heterojunction of Fe-Co3O4 /g-C3N4 drives photo-generated electrons in Fe-Co3O4 flowing to the holes of g-C3N4, which further inhibiting the recombination of g-C3N4 photo-generated carriers. This work provides a reference for the development of high-efficiency photocatalyst and an effective support for the development of semiconductor cocatalyst.
引用
收藏
页数:10
相关论文
共 70 条
[1]  
Alias A.N., 2013, ADV MATER RES-KR, V527, P652
[2]   Enhanced visible-light photocatalytic activity of g-C3N4/TiO2 films [J].
Boonprakob, Natkritta ;
Wetchakun, Natda ;
Phanichphant, Sukon ;
Waxler, David ;
Sherrell, Peter ;
Nattestad, Andrew ;
Chen, Jun ;
Inceesungvorn, Burapat .
JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2014, 417 :402-409
[3]   Boosting photocatalytic hydrogen evolution of g-C3N4 catalyst via lowering the Fermi level of co-catalyst [J].
Cai, Hairui ;
Wang, Bin ;
Xiong, Laifei ;
Bi, Jinglei ;
Hao, Hanjing ;
Yu, Xiaojing ;
Li, Chao ;
Liu, Jiamei ;
Yang, Shengchun .
NANO RESEARCH, 2022, 15 (02) :1128-1134
[4]   g-C3N4-Based Photocatalysts for Hydrogen Generation [J].
Cao, Shaowen ;
Yu, Jiaguo .
JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2014, 5 (12) :2101-2107
[5]   Photocatalytic activities of Bi2O2CO3/g-C3N4@PAN nanofibers in hydrogen production [J].
Chen, Yuanyuan ;
Zhang, Honghui ;
Liu, Kuili ;
Zhu, Xinying ;
Yuan, Huanli ;
Wang, Chunyan .
APPLIED SURFACE SCIENCE, 2022, 599
[6]   Metallic NiSe cocatalyst decorated g-C3N4 with enhanced photocatalytic activity [J].
Chen, Zhe ;
Gao, Yuting ;
Chen, Feng ;
Shi, Hongfei .
CHEMICAL ENGINEERING JOURNAL, 2021, 413
[7]   An Inorganic/Organic S-Scheme Heterojunction H2-Production Photocatalyst and its Charge Transfer Mechanism [J].
Cheng, Chang ;
He, Bowen ;
Fan, Jiajie ;
Cheng, Bei ;
Cao, Shaowen ;
Yu, Jiaguo .
ADVANCED MATERIALS, 2021, 33 (22)
[8]   Two-dimensional (2D)/2D Interface Engineering of a MoS2/C3N4 Heterostructure for Promoted Electrocatalytic Nitrogen Fixation [J].
Chu, Ke ;
Liu, Ya-ping ;
Li, Yu-biao ;
Guo, Ya-li ;
Tian, Ye .
ACS APPLIED MATERIALS & INTERFACES, 2020, 12 (06) :7081-7090
[9]   Ultrathin 2D/2D WO3/g-C3N4 step-scheme H2-production photocatalyst [J].
Fu, Junwei ;
Xu, Quanlong ;
Low, Jingxiang ;
Jiang, Chuanjia ;
Yu, Jiaguo .
APPLIED CATALYSIS B-ENVIRONMENTAL, 2019, 243 :556-565
[10]   g-C3N4-Based Heterostructured Photocatalysts [J].
Fu, Junwei ;
Yu, Jiaguo ;
Jiang, Chuanjia ;
Cheng, Bei .
ADVANCED ENERGY MATERIALS, 2018, 8 (03)