The Nehari manifold for a fractional critical Choquard equation involving sign-changing weight functions

被引:20
作者
Lan, Fengqin [1 ]
He, Xiaoming [1 ]
机构
[1] Minzu Univ China, Coll Sci, Beijing 100081, Peoples R China
关键词
Fractional Laplacian; Variational methods; Choquard equation; Critical exponent; Nehari manifold; BREZIS-NIRENBERG RESULT; ELLIPTIC-EQUATIONS; POSITIVE SOLUTIONS; EXISTENCE; OPERATORS;
D O I
10.1016/j.na.2018.10.010
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we prove the existence and multiplicity of nontrivial solutions for the following fractional Choquard equation with critical exponent {(-Delta)(s)u = lambda f(x)vertical bar u vertical bar(q-2u) + g(x) (integral(Omega)vertical bar u vertical bar(2)*(mu,s)/vertical bar x - y vertical bar(mu) dy) vertical bar u vertical bar(2)*(mu,s)(-2)u in Omega u = 0, in R-n \ Omega where Omega is a bounded domain in R-n with smooth boundary, s is an element of (0, 1), 0 < mu < n, n > 2s, 1 < q < 2 and 2*(mu,s) = (2n- mu)/(n-2s) is the critical exponent in the sense of Hardy-Littlewood-Sobolev inequality. lambda > 0 is a parameter and f, g : (Omega) over bar -> R are continuous functions but may change sign on Omega. (C) 2018 Elsevier Ltd. All rights reserved.
引用
收藏
页码:236 / 263
页数:28
相关论文
共 50 条
[21]   Sign-changing solutions for critical Choquard equation on bounded domain [J].
Liu, Chenchen ;
Yang, Xiaolong .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2025, 541 (02)
[22]   Multiple positive solutions for nonlinear critical fractional elliptic equations involving sign-changing weight functions [J].
Alexander Quaas ;
Aliang Xia .
Zeitschrift für angewandte Mathematik und Physik, 2016, 67
[23]   A Kirchhoff-type equation involving critical exponent and sign-changing weight functions in dimension four [J].
Lou, Qing-Jun .
MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2018, 41 (13) :5159-5177
[24]   Sign-changing solutions for a fractional Kirchhoff equation [J].
Isernia, Teresa .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2020, 190
[25]   Nehari manifold for non-local elliptic operator with concave–convex nonlinearities and sign-changing weight functions [J].
SARIKA GOYAL ;
K SREENADH .
Proceedings - Mathematical Sciences, 2015, 125 :545-558
[26]   Existence of sign-changing solution for a problem involving the fractional Laplacian with critical growth nonlinearities [J].
Gabert, Rodrigo F. ;
Rodrigues, Rodrigo S. .
COMPLEX VARIABLES AND ELLIPTIC EQUATIONS, 2020, 65 (02) :272-292
[27]   Nehari manifold for non-local elliptic operator with concave-convex nonlinearities and sign-changing weight functions [J].
Goyal, Sarika ;
Sreenadh, K. .
PROCEEDINGS OF THE INDIAN ACADEMY OF SCIENCES-MATHEMATICAL SCIENCES, 2015, 125 (04) :545-558
[28]   Multiple positive solutions to the fractional Kirchhoff-type problems involving sign-changing weight functions [J].
Yang, Jie ;
Liu, Lintao ;
Chen, Haibo .
AIMS MATHEMATICS, 2024, 9 (04) :8353-8370
[29]   Sign-changing solutions for a class of fractional Choquard equation with the Sobolev critical exponent in R 3 [J].
Zhang, Ziheng ;
Zhang, Danni .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2025, 543 (02)
[30]   Multiplicity results for a fractional Kirchhoff equation involving sign-changing weight function [J].
Bai, Chuanzhi .
BOUNDARY VALUE PROBLEMS, 2016,