The Nehari manifold for a fractional critical Choquard equation involving sign-changing weight functions

被引:20
作者
Lan, Fengqin [1 ]
He, Xiaoming [1 ]
机构
[1] Minzu Univ China, Coll Sci, Beijing 100081, Peoples R China
关键词
Fractional Laplacian; Variational methods; Choquard equation; Critical exponent; Nehari manifold; BREZIS-NIRENBERG RESULT; ELLIPTIC-EQUATIONS; POSITIVE SOLUTIONS; EXISTENCE; OPERATORS;
D O I
10.1016/j.na.2018.10.010
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we prove the existence and multiplicity of nontrivial solutions for the following fractional Choquard equation with critical exponent {(-Delta)(s)u = lambda f(x)vertical bar u vertical bar(q-2u) + g(x) (integral(Omega)vertical bar u vertical bar(2)*(mu,s)/vertical bar x - y vertical bar(mu) dy) vertical bar u vertical bar(2)*(mu,s)(-2)u in Omega u = 0, in R-n \ Omega where Omega is a bounded domain in R-n with smooth boundary, s is an element of (0, 1), 0 < mu < n, n > 2s, 1 < q < 2 and 2*(mu,s) = (2n- mu)/(n-2s) is the critical exponent in the sense of Hardy-Littlewood-Sobolev inequality. lambda > 0 is a parameter and f, g : (Omega) over bar -> R are continuous functions but may change sign on Omega. (C) 2018 Elsevier Ltd. All rights reserved.
引用
收藏
页码:236 / 263
页数:28
相关论文
共 46 条
[1]   Singularly perturbed critical Choquard equations [J].
Alves, Claudianor O. ;
Gao, Fashun ;
Squassina, Marco ;
Yang, Minbo .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2017, 263 (07) :3943-3988
[2]  
Applebaum D., 2004, NOT AM MATH SOC, V51, P1336
[3]   A critical fractional equation with concave convex power nonlinearities [J].
Barrios, B. ;
Colorado, E. ;
Servadei, R. ;
Soria, F. .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2015, 32 (04) :875-900
[4]  
Bisci GM, 2016, ENCYCLOP MATH APPL, V162
[5]   A concave-convex elliptic problem involving the fractional Laplacian [J].
Braendle, C. ;
Colorado, E. ;
de Pablo, A. ;
Sanchez, U. .
PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2013, 143 (01) :39-71
[6]   POSITIVE SOLUTIONS OF NON-LINEAR ELLIPTIC-EQUATIONS INVOLVING CRITICAL SOBOLEV EXPONENTS [J].
BREZIS, H ;
NIRENBERG, L .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1983, 36 (04) :437-477
[7]   A RELATION BETWEEN POINTWISE CONVERGENCE OF FUNCTIONS AND CONVERGENCE OF FUNCTIONALS [J].
BREZIS, H ;
LIEB, E .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1983, 88 (03) :486-490
[8]   A semilinear elliptic system involving nonlinear boundary condition and sign-changing weight function [J].
Brown, K. J. ;
Wu, Tsung-Fang .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2008, 337 (02) :1326-1336
[9]   The Nehari manifold for a semilinear elliptic equation with a sign-changing weight function [J].
Brown, KJ ;
Zhang, YP .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2003, 193 (02) :481-499
[10]   EXISTENCE OF A NONTRIVIAL SOLUTION TO A STRONGLY INDEFINITE SEMILINEAR EQUATION [J].
BUFFONI, B ;
JEANJEAN, L ;
STUART, CA .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1993, 119 (01) :179-186